```
    IVS-EOP file format
    Version 3.1 (Jul 18, 2023)
    Claudia Flohrer, BKG (claudia.flohrer@bkg.bund.de)
John Gipson, IVS Analysis Coordinator (john.m.gipson@nasa.gov)
```


INTRODUCTION

The IVS is using a dedicated IVS-EOP file format for distributing its EOP time series. The changes from version 3.0 to 3.1 are given in the next section of this document.

CHANGES FROM VERSION 3.0 TO 3.1

As the nutation components in the data block represent corrections to an a priori model, this model needs to be specified. The two additional mandatory keywords "PRECESSION_MODEL" and "NUTATION_MODEL" have been added to the header block to specify the corresponding precession and nutation model.

REFERENCES

- IVS-EOP format version (3.0):
https://ivscc.gsfc.nasa.gov/IVS_AC/files_IVS-AC/
IVS-EOP_Format_v30_20220627.txt
- IVS-EOP format version (2.2): https://ivscc.gsfc.nasa.gov/IVS_AC/files_IVS-AC/eop_transfer_format.txt
- Proposal for extending the IVS-EOP 2.2 format:

Proposal_EOPfileformat_v30.pdf

- SINEX format description:
https://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/ sinex.html
++ +
\qquad

```
IVS-EOP file format
Version 3.1 (Jul 18, 2023)
A P P E N D I X
I V S E O P
V E R S I O N 3. 1
DETAI L F O R M A T D E S CRIP T O N
```

1. INTRODUCTION
2. DATA STRUCTURE
3. DATA DESCRIPTION LINE
4. HEADER BLOCK
5. DATA BLOCK
6. FOOTER LINE
7. FILE NAME CONVENTION

1. Introduction

This document describes the IVS-EOP format. The IVS is using a dedicated EOP format, to provide it's EOP estimates to the IERS Rapid Service/Prediction Centre, the IERS Earth Orientation Centre and to the scientific community.

The IVS-EOP format was suggested by Leonid Petrov in 1999. In 2021, the IVS analysis working group accepted a proposal made by BKG for a format update from version 2.2 to version 3.0. This latest update of the format introduced a bigger change, by adding a dedicated header block with keywords, which give information in the underlying solution used to generate the reported EOP time series. We are thankful for feedback from the IVS community, and particularly want to acknowledge the comments of James Anderson and Leonid Petrov.

2. Data Structure

An IVS-EOP file must start with a data description line and ends with a footer line. The file is subdivided into two blocks. Each block is enclosed by a header and trailer line.

The following blocks are defined:

HEADER

DATA
These block titles are immediately preceded by a '+' or a '-' marking the beginning and the end of a block. The block titles must be in capital letters. After a block has started(+) it must be ended(-) before another block can begin. The general structure is as follow:

The DATA block comes after the HEADER block.
Lines starting with '\#', '*', '!' in column 1 are considered as comment lines. Comment lines are allowed everywhere, i.e. also within the header and data block.

The IVS-EOP file is an ASCII file using the ASCII character set.
3. Data Description Line (Mandatory)

Description:

The data description line is mandatory and must be the first line in an IVS-EOP file.

Contents:

Time scale	Three letters indicating the time scale used	1X, A3
Observation	Single character indicating the	1X, A1
Code	technique(s) used to generate the	
	EOP solution. It should be	
	consistent with the IERS	
	convention. This character code	
	may be:	
	C - combined techniques used	
	D - DORIS	
	L - SLR	
	M - LLR	
	P - GNSS	
	R - VLBI	

4. HEADER block (Mandatory)

Description:
The header block is built of single lines for each keyword, starting with a keyword, followed by a value. Keywords can be mandatory or optional. The keyword values can be specific values from a given list (for machine readability) or free values (for information only).

Contents:

| \qquad 1 \qquad | \qquad

List of allowed keywords and values:
Most keywords are mandatory. Optional keywords are given in brackets in the table below.

ASCII tabs, following the
notation:
NAME [_TIMEDEP_DEGREE]
CONSTRAINT UNIT [RHS]
with [] indicating optional
arguments
NAME specifies the parameter
name. Valid names are:
XPOL, YPOL, DUT1, LOD,
DPSI or DX, DEPS or DY
TIMEDEP could be either
DER (time derivative) or
BSP (B-spline)
DEGREE is the degree of the
time derivative/B-spline.
CONSTRAINT is the value for
the constraint (i.e. the
reciprocal weight) applied
for the specific parameter.
Use 'NONE' if no constraint |
was used.
UNIT specifies the unit of thel
EOP estimates and of the
corresponding constraint |
(both units have to be the
same). Valid units are:
s - second
ms - millisecond
us - microsecond
as - arcsecond
mas - milliarcsecond
uas - microarcsecond
/day - each unit above/day
RHS specified the right hand
side value.
EOP, which are not estimated,
should not be specified here.
EOP can appear in random
order.
Note: LOD is treated here as
individual parameter and not
as dUT1 derivative. It is
maintained with the group of
rates for consistency with thel
other techniques.

```
| [NUMBER_OF_ 
```

5. DATA block (Mandatory)

Description:
The data block is built of single lines per epoch. Two additional comment lines, with the first line describing the data field and the second line describing the units, are placed immediately before the first data line. The units have to be consistent with the units described in the header block (keyword UNIT). They can differ from the example given in the DATA LINE table below (3rd column). Consult the keyword table above (Sec. 4) for valid units.

For readability the values in these two comment lines should be placed centered over the columns. All data records have to be ordered in time.

The lines of the data block are free format, allowing for a variable field length. The fields are separated by at least one ASCII space. The lines should be parsed by splitting on whitespaces rather than using hard-coded field widths. There are 31 data fields (columns) per line. Data which is unavailable is replaced by NA. This is the case for example with Intensives, which don't estimate polar motion, nutation, or EOP rates. Several data entries (i.e. lines) per parameter and session are possible, depending on the EOP parameterization, e.g., high resolution of offsets (every hour) or piece-wise linear offsets.

Contents:

Comment:
Although it is inconsistent to have LOD in the group of rates due to the toggling of the sign, it is maintained here for consistency with the other space-geodetic techniques.

LOD $=\operatorname{UT1}(\mathrm{n})-\operatorname{UT1}(\mathrm{n}+1)$ with n in days

LOD has the same magnitude but opposite sign of the UT1-UTC rate or the UT1-TAI rate, which are normally determined in VLBI analyses and given in s/day.
6. Footer Line (Mandatory)

Description:
The footer line is mandatory and must be the last line in an IVS-EOP file. Contents:

7. File name convention

The IVS-EOP file name follows the file name convention as given at: https://ivscc.gsfc.nasa.gov/products-data/submit-product.html

There are three file types with different extensions:

The following keys are used:

- aaa = Analysis Center 3-letter code
- ccccc $=$ Solution 5-character code

