Phase Observables

Minghui Xu & James M. Anderson

D Phase observables

Good case for **one** triangle of **all** sources in **one** session:

□ 180 degrees

This case has happened for R1 and R4 sessions after 2016

 \square 180 degrees

This case has happened for some VLBA + sessions

Constant Offsets

Helmholtz Centre Potsdam

上海天文台 Statist American Barry

□ Constant offsets

3. Constant offsets:

GFZ Helmholtz Centre POTSDAM

□ Constant offsets

GFZ

Helmholtz Centre Potsdam

□ Random-like values

□ Random-like values

Thank you very much

Understanding Closures

D Delay and Phase (and Rate)

Real calculations based on real observables are more complicate than the concepts

 $\tau_{clr} = \tau_{ab} + \tau_{bc} + \tau_{ca} \qquad \tau_{bc}: + \tau'_{ab} \cdot \tau_{bc}: + \dots$

 $\varphi_{clr} = \varphi_{ab} + \varphi_{bc} + \varphi_{ca}$

 $\varphi_{bc}: +2\pi f(\tau'_{ab}\cdot \tau_{bc}^{\cdot}+...)$

Understanding Closures

D Delay and Phase (and Rate)

Take reference frequency for phase as an example:

# of obs.	Freq (MHz)
7,446,197	8212.99
2,482,801	8210.99
989,009	8409.99
682,045	8182.99
261,897	8365.75
214,452	8405.99
211,713	8460.00
117,655	8152.49
100,996	8154.49
80,219	8204.99

$$\varphi_{clr} = \varphi_{ab} + \varphi_{bc} + \varphi_{ca}$$
$$\varphi_{bc}: +2\pi f (\tau'_{ab} \cdot \tau_{bc} + ...)$$

