

RA-Dec Correlations Significantly Alter Rotational Alignment

Chris Jacobs, Michael Heflin, Gabor Lanyi, Ojars Sovers, Alan Steppe

Tracking Systems & Applications Section

Jet Propulsion Laboratory California Institute of Technology/NASA

11 Feb. 2010

CL#10-1868 Jacobs et al., IVS Analysis Workshop

Copyright ©2010 California Institute of Technology. Government sponsorship acknowledged for research done under contract with NASA

Data: S/X October 1978 – September 2009 5.3 Million delays from 1709 sources **Rotations with respect to 267 ICRF2 definings:** No Net Rot. constraint: $\sum s x ds = 0$

Estimated using full RA-Dec covariance:

X-axis =	1.4	+- 5.4	µas
Y-axis =	2.4	+- 5.6	µas
Z-axis =	2.0	+- 4.4	µas

Estimated using only diagonal covariance:

X-axis =
$$-25.8 + 4.9 \mu$$
as
Y-axis = $9.4 + 4.9 \mu$ as
Z-axis = $-1.6 + 4.3 \mu$ as

ICRF2 credit: Ma et al, Fey et al eds., ICRF2, IERS, 2009.

Data: K-band sessions #1-12: 2002–2009 0.1 Million delays from 275 sources

Rotations with respect to 125 ICRF2 defining:

Estimated using full RA-Dec covariance:

X-axis =	0.1 +-	6.8	µas
Y-axis =	1.2 +-	7.4	µas
Z-axis =	-0.1 +-	5.2	µas

Estimated using only diagonal covariance: X-axis = -20.5 +- 11.5 μas

$$Y-axis = -17.7 + -11.9 \mu as$$

 $Z-axis = -8.2 + 7.9 \mu as$

Data: X/Ka-band: 2005–2009 0.01 Million delays from 387 sources

Rotations with respect to 153 ICRF2 defining:

Estimated using full RA-Dec covariance:

X-axis =	-0.3 +-	6.3	µas
Y-axis =	2.9 +-	6.6	µas
Z-axis =	-0.1 +-	4.9	µas

Estimated using only diagonal covariance: $X-axis = -35.1 + 17.9 \mu as$ $Y-axis = -31.1 + 18.3 \mu as$ $Z-axis = -38.6 + 11.2 \mu as$

Conclusions:

The No-Net-Rotational constraint:

 $\sum s x ds = 0$

shapes the RA-Dec full covariance produced by the solution.

The correlations contain significant information needed to correctly estimate 3-D rotations and their sigmas and thus must be accounted for.

Note: the rotations in this paper have changed slightly since the workshop due to the post-workshop correction of a small bug in our NNR code. The conclusion that correlations are important at the level of 10s of µas remains unchanged.

Backup slides

Showing distribution of RA-Dec correlations

Note trend of positive correlations CAT10.5 at short arcs Correlation changing to 0 negative correlations at long arcs Ω $\alpha - \alpha$ Ο DEC 501500 100Arclength (deg)

Note that almost all Dec-Dec correlations are positive.

Thus differences are better determined than the absolute Declinations.

This creates a tendency for zonal errors.

