GPU based software correlators perspectives for VLBI2010

Hobiger T. ${ }^{1}$, Kimura M. ${ }^{1}$, Takefuji K. ${ }^{1}$, Oyama T. ${ }^{2}$, Koyama Y. ${ }^{1}$, Kondo T. ${ }^{1}$, Gotoh T. ${ }^{1}$, Amagai J. ${ }^{1}$
(1) Space-Time Standards Group, NICT, Japan
(2) NAOJ, Japan

Content

- Graphics processing units (GPUs)
- Programming GPUs
- Scientific applications based on GPUs
- GPUs for the VLBI software correlator?
- Benchmarking
- Results
- Conclusion and outlook

CPU vs. GPU performance

Development mainly driven by game industry

GPU a "perfect" parallel processor

Control	ALU	ALU
	ALU	ALU
Cache		

DRAM

CPU

DRAM

GPU
(Multi-core) CPU: Thread parallel vs.
GPU: Data parallel architecture

GPU programming

- OpenGL - very graphics oriented
- CUDA - NVIDIA
- Currently the most mature development platform
- Brook+, CAL - AMD/ATI
- OpenCL
- platform independent initiative, now available for NVIDA and AMD GPUs plus AMD multicore CPUs
- Libraries: BLAS, FFT ...

GPUs for radio astronomy

- Murchison Widefield Array (MWA)
- Real-time post-processing pipeline implemented on GPUs ("Diesel Powered GPU Computing ")
- First tests with GPUs as correlators
- GPU accelerated radio astronomy signal convolution (Harris et al., ExA, 2008)
- Many other institutes have started to play with this tool
- NICT runs GPUs as GPS receivers and utilizes them for time and frequency transfer experiments
- NICT has started to develop VLBI correlators based on GPUs

Our test equipment

- Card used for this study: NVIDIA GTX 280
- Processor Cores 240
- Processor Clock 1296 MHz
- Memory

1GB GDDR3

- Price
~ 300 \$
- Power consumption ~ 200 Watt
- Double and single precision support
- Deployed in off-the-shelf DELL PC
- Extendable up to 3 cards/PC

Benchmarking the GPU

- Simulate single-baseline FX correlation engine (w.o. delay tracking)

FLOPS*

- Do FFT on station X data
- Do FFT on station Y data
- Compute cross-spectrum Flops per FX engine:
$5 \cdot N \cdot \log _{2}(N)$
$5 \cdot N \cdot \log _{2}(N)$
$6 \cdot N$

$$
10 \cdot N \cdot \log _{2}(N)+6 \cdot N
$$

- Test serial and parallel execution for different FFT sizes
- Measure performance (Gflops) and theoretical throughput (Msps)
- Measure throughput for $\mathrm{CPU} \rightarrow$ GPU and GPU \rightarrow GPU data transfer
* Following the "FFT Benchmark Methodology" (http://www.fftw.org/speed/)

FX performance (Gflops)

Nict

FX performance (Gflops)

Nict

FX performance (Gflops)

FX performance (Gflops)

FX performance (Gflops)

Performance (Msps)

Data transfer

Nict

Implementing the correlator

- work done by Kimura-san in cooperation with NOAJ
- 2 GTX295 (NVIDIA) cards,
- total price ~800 \$
- Implementing the "full correlator"
- Copy data CPU \rightarrow GPU memory
- Unpacking + fringe stopping
- FFT
- Delay tracking
- Correlation + Integration
- Testing with 1024 Msps / 2 bit / 1 channel
- Single-station (autocorrelation) mode
- Multi-station mode (correlating all baselines)

Results (Msps)

Summary

~ 200 Gflops (un-optimized)
~ 0.5 Gflops /\$
~0.8 Gflops/Watt
~ 12 Gflops
(based on best FFTW score)
~ 0.1 Gflops / \$
~ 0.2 Gflops / Watt

- Data transfer CPU \leftrightarrow GPU is not a severe restriction (moreover, latest CUDA drivers allow processing while transferring data between GPU and CPU)
- Real bottleneck: VLBI2010 raw data, 8-16 Gbps/ station \rightarrow does not go through 10G ethernet in real-time
- Programming as simple as on the CPU (more simple than writing SSE instructions)

Outlook

- Next generation GPUs announced for Q1 2010
- two times more computing cores
- Larger shared memory + L2 cache \rightarrow speeds up the FFTs
- NICT has started the development of a software correlator based on GPUs
- VLBI2010@Home?
- SETI@Home and Folding@Home successfully use the computing power of thousands of idle GPUs worldwide

Daytime

Nighttime

Thank you very much for your attention!

Contact:

hobiger@nict.go.jp

This work was supported by a Grant-in-Aid for scientific research (KAKENHI, No. 21241043)

