- COLD MAGICS -

COntinuous Local Deformation Monitoring of an Arctic GeodetIC Fundamental Station

Rüdiger Haas

Chalmers University of Technology

Sten Bergstrand

SP Technical Research Institute of Sweden

Overview

- Motivation
- ARCFAC project 026129-2008-58
- Conclusions and outlook

Motivation (1/3)

- The GGOS aims at a combination and integration of observations and results of various space geodetic techniques
- An important ingredient for the GGOS are geodetic colocation stations
- The accurate knowledge of the local geodetic relations between the reference points at these geodetic colocation stations is required
- => accurate "local-ties" are needed for GGOS & ITRF
- Requirements: 0.1 mm accuracy and full variancecovariance information

Motivation (2/3)

- Local ties surveys at fundamental stations are traditionally performed every couple of years only
- Reason: Local tie survey is a difficult and time consuming engineering task
- Traditionally, local tie surveys often are a combination of direction and distance measurements with tachymeters and height differences from spirit levelling
- Some problems with this approach are:
 - Inconsistent results from different campaigns and survey teams
 - Did something change, and if so, when?
 - Not necessarily 'cartesian local systems' that can be transformed easily to a global cartesian system (i.e. ITRF)

Motivation (3/3)

- Possible solution:
 - Continuous local tie monitoring
 - Automated operation
 - Only angles and distances, no spirit levelling
- Where to test this idea?
 - At the Ny-Ålesund Geodetic Observatory
 - Co-located VLBI, GNSS, Gravimetry, tide gauge,...
 - A very important co-location site due to its northern location (79 deg. N)

The ARCFAC project

- ARFAC = European Centre for Artic Environmental Research
- Supports access to research facilities at Ny-Ålesund (Spitsbergen)
- Application to ARCFAC submitted in September 2008
- Project granted late 2008
- Project work July 6-16, 2009

The Geodetic Observatory at Ny-Ålesund

Tide gauge

P97

1

20 m radio telescope

P91 (1)

3

PQ

P98 ⁴/

P95

G

GPS monuments NYAL, NYA1

P92

P93

The instrumentation

- 1 programmable total station (Leica TM30)
- 14 retro-reflecting prisms (Leica GPR112)
 - 6 mounted on the VLBI radio telescope, using magnets (T1, T2, T3, T4, T5, T6)
 - 1 attached to one of the GPS-monuments (NyA)
 - 1 close to the tide gauge in the harbour (Kai)
 - 6 on survey pillars (P91, P92, P94, P95, P96, P97)
- Meteorological sensors
- Laptop and software (Leica GeoMos)

The total station Leica TM30

Performance specifications: Measurement accuracy for Horizontal angles 0.15 mgon Vertical angles 0.30 mgon Distances 0.6 mm ± 1 ppm

- Programmable
- Automized operation
- Automated target recognition

Total station and prism on pillars

The TM 30 on survey pillar P93.

A prism on one of the survey pillars.

The prism at the GNSS-monument NYAL

Mounting the prism.

The prism on the GNSS monument.

The prisms at the telescope

Prisms T1, T2, T3, T4, T5 at the telescope tower (not moving).

Prism T6 on the upper moving part of the telescope.

The prism at the tide gauge

The tide gauge in the harbour.

Prism mounted at the harbour pier behind the tide gauge.

Zoom-in to the telescope

The measuring program:

- Measurements in two faces (angles and distances)
- Repetition cycle every 6 minutes
- Meteorological data recorded every 1 minute
- Continuous measurements for more than 7 days

07/08 07/09 07/10 07/11 07/12 07/13 07/14 07/15 07/16

Distances: deviation from respective mean value.

07/08 07/09 07/10 07/11 07/12 07/13 07/14 07/15 07/16

Solar radiation

Ny-Ålesund, incoming radiation 900 SW SW red 800 SW orange SW diffuse SW direct sun 700 U٧ + LW 600 500 W/m^2 400 300 200 100

The solar radiation data were kindly provided by AWIPEV.

07/13

07/14

07/15

07/12

07/11

07/10

0 🔜 07/09

07/16

Conclusions and outlook (1/2)

- We appear to detect deformations at the 1 mm level for several targets
- In particular the GNSS-mast shows deformations, but also the targets on the telescope
- The targets on the survey pillars show less signature
- These signatures are detected during the period of continuous solar radiation
- We cannot distinguish between motions of the targets and motion of the tachymeter

Conclusions and outlook (2/2)

- We need at least a second monitoring instrument for redundancy
- We think a setup of 3 total stations, distributed well geometrically and also able to survey each other should be optimal
- This concept could allow Continuous-Cartesian-Connections (CCC) at geodetic co-location sites
- The concept should be included in the planning and the construction of VLBI2010 stations

Acknowledgements

- We thank:
 - ARCFAC for supporting the project
 - Line Langkaas (Statens Kartverk) for buying the survey prisms
 - Ole Bjørn Årdal and Carl Petter Nielsen (Statens Kartverk) for the local support at Ny-Ålesund
 - Hans Borg (Leica Geosystems Sweden) for borrowing the TM30 and GeoMos software
 - Christer Thunell (Leica Geosystems Sweden) for support and an introduction to the GeoMos software
 - Siegrid Debatin (AWI Potsdam) for providing solar radiation data

Thank you for your attention!