

RESEARCH GROUP ADVANCED GEODESY Institute of Geodesy and Geophysics

Sixth IVS General Meeting, February 7-13, 2010, Hobart, TAS, Australia

Session 3:

Estimation of Geodetic and Geodynamical Parameters with VieVS

Hana Spicakova, Johannes Boehm, Sigrid Boehm, Tobias Nilsson, Andrea Pany, Lucia Plank, Kamil Teke, Harald Schuh

Vienna VLBI Software (VieVS)

- VieVS: new geodetic VLBI data analysis software
 - written in Matlab

more details about the theoretical computed delay in:

Session 3:

Comparison Campaign of VLBI Data Analysis Software – First Results

Lucia Plank

Vienna VLBI Software (VieVS)

- single session solution classical least squares adjustment
 - time varying parameters are modelled by piecewise linear offsets at integer fractions of integer hours

🤌 vie	e_lsm_mul	ti_gui_tropo										
	vie_lsm [troposphere]											
	apply relative introduce r introduce r introduce r	constraints bet elative constrai elative constrai elative constrai	tween troposph nts between pv nts between pv nts between pv	its are minutes for estimation intervals are picosec^2/sec for the coefficients of the ZWD constraints are milimeters/day for the coefficients of the NGR & EGR aints								
	ZWD coef. 0.7000	NGR coef. 2	EGR coef. 2	ZWD int. 60	NGR int. 360	EGR int. 360	est. ZWD	est. NGR	est. EGR			
-							_	Back		Next		
	exam	ple of t	roposp	here pa	iramete	risatior	ו					

development of program unit for parameter estimation with so-called **global solution**

present state, common parameters: antenna coordinates and velocities, EOPs and Love & Shida numbers (reduction of clock parameters, zwd, troposphere gradients)

• Step 1: reduction of parameters

$$\begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

estimated p.
reduced p.

 $N_{reduc} = N_{11} - N_{12} \cdot N_{22}^{-1} \cdot N_{21}$ $b_{reduc} = b_1 - N_{12} \cdot N_{22}^{-1} \cdot b_2$

• Step 2: stacking of the reduced normal equation systems

$$N = N_{reduc_{1}} + N_{reduc_{2}} + \dots + N_{reduc_{nse}}$$
$$b = b_{reduc_{1}} + b_{reduc_{2}} + \dots + b_{reduc_{nse}}$$

 $x = N^{-1} \cdot b$

Love & Shida numbers

• Solid Earth tidal deformation arises from the variations in the Earth's gravitational field caused by the Moon/Sun relative to its strength at the geocentre

$$V_{Grav} = \frac{GM_M}{R} \sum_{n=0}^{\infty} \left(\frac{r}{R}\right)^n P_n(\cos\alpha) = V_0 + V_1 + V_2 + \dots$$
 tidal potential V ^{tid}

 Love and Shida numbers h, l are dimensionless parameters, which characterize how strong is the effect of the potentional component on the displacement

basic Earth model:

tidal displacement in REN system

 $u_{\rm E}$ =

spherical, non-rotating, elastic, isotropic

h and *l* depend only on the degree of the tidal potential

$$u_{\rm R} = \sum_{n=2}^{\infty} h_n \cdot \frac{1}{g} \cdot V_n^{tid}$$
$$u_{\rm N} = \sum_{n=2}^{\infty} l_n \cdot \frac{1}{g} \cdot \frac{\partial V_n^{tid}}{\partial \varphi}$$
$$= \sum_{n=2}^{\infty} l_n \cdot \frac{1}{g \cdot \cos \varphi} \cdot \frac{\partial V_n^{tid}}{\partial \lambda}$$

Love & Shida numbers

More precise Earth model with fluid core and elastic mantle

 the tidal response of the Earth becomes frequency dependent in the diurnal band

tidal harmonic argument

$$\delta u_{\mathrm{R}(f)}^{(21)} = -\frac{3}{2} \sqrt{\frac{5}{24\pi}} H_f \delta h_{21(f)} \sin(2\varphi) \sin(\theta_f + \lambda)$$

 H_f Cartwright-Tayler amplitude of the tidal term $\delta h_{21(f)}$ difference of $h_{21}(f)$ from the nominal value h_2

the corrections to radial displacement coming from the harmonic terms of the second degree tidal potential in the diurnal band

 θ_{f}

- **Resonance** of the tidal force with the forces at the elliptical core-mantle boundary at the Free Core Nutation period
- FCN: the fluid core rotates around an axis which is slightly inclined w.r.t. the axis of rotation of the mantle → small periodic motion of the Earth's axis of rotation (Wahr, 1981)

Free Core Nutation (FCN)

Motion of the Earth's rotational axis in the celestial system

Position of the **Celestial Intermediate Pole** in the **Geocentric Celestial Reference System**

FCN is a rotational free mode of the Earth, which **cannot be predicted** rigorously. It is not considered as a part of the a-priori precession-nutation model

Free Core Nutation (FCN)

Free Core Nutation (FCN)

- Three options for determining the FCN-period
 - 1. analysis of **celestial pole offsets**
 - e.g. Herring et al.,1986; Vondrak and Ron, 2006
 - 2. analysis of tidal gravity data
 - e.g. Defraigne, 1994; Florsch and Hinderer, 2000; Ducarme et al., 2007
 - **3.** analysis of observed solid Earth **tidal displacements**, e.g., of the VLBI antennas
 - Haas and Schuh, 1996 10 years data

(Determination of frequency dependent Love and Shida numbers from VLBI data. Geophysical Research Letters. Vol. 23 No. 12/1996. p.1509-1512)

Vienna VLBI Software (VieVS)

Present state in VieVS

- degree 2 Love & Shida numbers: h2, l2
- frequency dependent Love & Shida numbers in the diurnal band
 - 31 diurnal tidal waves (also in dehanttideinel.f (=subroutine provided by V.Dehant))
 - estimate Love & Shida numbers separately or
 - apply condition equation with FCN-period and resonance strength factor

guiglob_hl					
Love numbers			Shida numbers		
constant Love number fo	or all degree 2 tide:	s	constant Shida number for all degree 2 tides	3	
diurnal band			diurnal band		
estimate diurnal Love	enumbers		estimate diurnal Shida numbers		
 ✓ 135.855 (Q1) ✓ 145.545 ✓ 145.555 (O1) ✓ 155.855 (N01) ✓ 162.556 (pH) ✓ 163.555 (P1) ✓ 165.545 ✓ 165.555 (K1) 	125.755 127.555 135.645 137.455 147.555 153.655 155.455 155.665	 164.554 164.556 165.575 166.556 166.564 167.355 173.655 175.455 	apply condition equation stimate resonance factor HRS	ОК	
✓ 165.565 ✓ 166.554 (psi1) ✓ 167.555 (phi1)	☐ 157.455 ☐ 163.545	185.555 185.565	✓ estimate FCN	$h_{21}(\omega_T) = h_2$	$\mu_{1}(\omega_{O1}) + h_{RS} \frac{\omega_{T} - \omega_{O1}}{\omega_{FCN} - \omega_{T}}$

VLBI data

- R1 and R4 IVS sessions
 - 24-hour sessions
 - since Jan 2002 Nov 2009 (7 years)

- outliers in observations removed
- only sessions with a posteriori variance of unit weight < 1.5

First results

First results

First results

- VLBI group at TU Vienna is developing a new data analysis software, called VieVS (Vienna VLBI Software) <u>http://mars.hg.tuwien.ac.at/~vievs/</u>
- a new modul for global adjustment of more sessions is being implemented into the software
- aside from estimation of a new TRF/CRF or EOPs the global modul allows to determine geophysical parameters such as frequency dependent Love and Shida numbers and the Free Core Nutation period from solid Earth tidal deformations

Thank you for your attention!

Estimation of Geodetic and Geodynamical Parameters with VieVS

Hana Spicakova, Johannes Boehm, Sigrid Boehm, Tobias Nilsson, Andrea Pany, Lucia Plank, Kamil Teke, Harald Schuh