

IVS combination:

Correlations between the different input series

Sarah Böckmann, Thomas Artz, Axel Nothnagel

Institute of Geodesy and Geoinformation University Bonn

Motivation

Motivation

Motivation

4

Problem IVS (intra-technique) combination:

- multiple use of the same set of original observations
- different analysis options, but a number of identical models

=> Contributions of the ACs cannot be completely independent BUT: treated as independent

Goal:

Introduce correlations to account for the dependence of the individidual contributions

* investigate influence of **neglecting / considering correlations** on estimated parameters & formal errors

7

Combining Normal Equation Systems

functional model:

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \hat{x_c}$

stochastic model:

$$\Sigma \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} N_1^{-1} & 0 \\ 0 & N_2^{-1} \end{bmatrix}$$

adjustment:

 $(N_1 + N_2) \hat{x}_c = n_1 + n_2$

8

Combining Normal Equation Systems

functional model:

stochastic model:

odel: $\Sigma(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} N_1^{-1} & 0 \\ 0 & N_2^{-1} \end{bmatrix}$

adjustment:

$$(N_1 + N_2) \hat{x}_c = n_1 + n_2$$

=> Correlations cannot be included

9

Combining Observation Equation Systems

functional model:

$$\begin{bmatrix} l_1 \\ l_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \hat{x}_c$$

stochastic model:

$$\Sigma \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} = \begin{bmatrix} \sigma_1^2 \Sigma_{11} & \sigma_{12} \Sigma_{12} \\ \sigma_{12} \Sigma_{12} & \sigma_2^2 \Sigma_{22} \end{bmatrix}$$

adjustment:

$$\begin{bmatrix} A_1^T & A_2^T \end{bmatrix} \boldsymbol{\Sigma}^{-1} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \hat{x}_c = \begin{bmatrix} A_1^T & A_2^T \end{bmatrix} \boldsymbol{\Sigma}^{-1} \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$

10

Combining Observation Equation Systems

functional model:

$$\begin{bmatrix} l_1 \\ l_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \hat{x}_c$$

stochastic model:

$$\Sigma \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} = \begin{bmatrix} \sigma_1^2 \Sigma_{11} & \sigma_{12} \Sigma_{12} \\ \sigma_{12} \Sigma_{12} & \sigma_2^2 \Sigma_{22} \end{bmatrix}$$

adjustment:

$$\begin{bmatrix} A_1^T & A_2^T \end{bmatrix} \boldsymbol{\Sigma}^{-1} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \hat{x}_c = \begin{bmatrix} A_1^T & A_2^T \end{bmatrix} \boldsymbol{\Sigma}^{-1} \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$

=> Correlations can be included

=> Observation equations are not available

Modification of Calc/Solve

=> extract observation equations

Test dataset: CONT02

Simulation of two solutions

- different databases of the same session (IVS data server & BKG)
 - => different selection of outliers, clock breaks, calibration, ...

- different analysis options

=> different parameterization of ZWD, gradients, different weighting, a priori values for ZWD and gradients

Combination at the level of observation equations

=> combined parameters, correlations

Validation

universität**bonn**

13

Combining 2 equal contributions (correlated by 1)

Consider / neglect correlations

=> estimated parameters: no effect

Consider / neglect correlations

- => estimated parameters: no effect
- => formal errors: too optimistic by $\sqrt{2}$

- => Correlations 0.5 0.7
- => Level of correlations not constant

Influence of correlations on estimated parameters

17

Influence of correlations on estimated parameters

IVS 2010 General Meeting, Hobart, 8-11 February 2010

Correlations

universität**bonn**

Influence of correlations on formal errors

Correlations

universität**bonn**

Determination of scaling factors

Assumption:

- combination = calculation of average
- Influence of correlations on formal errors (error propagation):

- 6 ACs, equal precision for each AC, correlated by 0.6
 - => scaling factor = 2

IVS combination

Simulations:

- quantify the level of correlations between contributions to IVS combination
 => significant correlations between 0.5 and 0.7
- influence of correlations on
 - * estimated parameters: => small differences, but within formal errors
 - * formal errors: => too optimistic formal errors if correlations are neglected

IVS combination:

- based on normal equations
 - => correlations cannot be included within the combination itself
- scale formal errors => factor of 2

Disadvantage: Simulations are carried out with one software only
=> smaller correlations using the results of different software packages?

Thanks to IAG for Travel support!

Combination Observation Equations

Level of correlations by using different solution setups

analysis options	correlation
parameterization of ZWD & gradients	~ 0.90
a prioris for ZWD & gradients	~ 0.95
reference clock	~ 0.99
weighting	~ 0.80
different databases & different analysis options	~ 0.6

Influence of correlations on estimated parameters

26

Comparison with independ EOP series (e.g. Bulletin A)

 $diff_{single} = EOP_{VLBI single} - EOP_{BullA}$

 $diff_{combi} = EOP_{VLBI combi} - EOP_{BullA}$

Accuracy:

- WRMS of differences: WRMS single, WRMS combi
- formal errors of differences: STD_{single}, STD_{combi}

Ratios of combined and single solution should be equal:

scaling factor
$$XSTD_{combi}$$
 $\approx \frac{STD_{single}}{WRMS_{combi}} \approx \frac{WRMS_{single}}{WRMS_{single}}$

=> Assumptions to calculate scaling factor OK