IVS combination:
 Correlations between the different input series

Sarah Böckmann, Thomas Artz, Axel Nothnagel
Institute of Geodesy and Geoinformation
University Bonn

Problem IVS (intra-technique) combination:

- multiple use of the same set of original observations
- different analysis options, but a number of identical models
=> Contributions of the ACs cannot be completely independent BUT: treated as independent

Goal:

Introduce correlations to account for the dependence of the individidual contributions

Correlations:

Assumption 1: n independent contributions
=> correlation $=0$
Assumption 2: n identical contributions
=> correlation = 1
Negligence of correlations
=> estimated parameters: no effect
=> formal errors: too optimistic by \sqrt{n}

IVS combination:

contributions not identical, not completely independent

* quantify the level of correlations
* investigate influence of neglecting / considering correlations on estimated parameters \& formal errors

Combining Normal Equation Systems

functional model: $\quad\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right] \hat{x}_{c}$
adjustment:

$$
\left(N_{1}+N_{2}\right) \hat{x}_{c}=n_{1}+n_{2}
$$

Combining Normal Equation Systems

functional model: $\quad\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right] \hat{x}_{c}$
stochastic model:

$$
\Sigma\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
N_{1}^{-1} & 0 \\
0 & N_{2}^{-1}
\end{array}\right]
$$

adjustment:

$$
\left(N_{1}+N_{2}\right) \hat{x}_{c}=n_{1}+n_{2}
$$

=> Correlations cannot be included

Combining Observation Equation Systems
functional model: $\quad\left[\begin{array}{l}l_{1} \\ l_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right] \hat{x}_{c}$
stochastic model: $\quad \Sigma\left(\left[\begin{array}{l}l_{1} \\ l_{2}\end{array}\right]\right)=\left[\begin{array}{cc}\sigma_{1}^{2} \Sigma_{11} & \sigma_{12} \Sigma_{12} \\ \sigma_{12} \Sigma_{12} & \sigma_{2}^{2} \Sigma_{22}\end{array}\right]$
adjustment:

$$
\left[\begin{array}{ll}
A_{1}^{T} & A_{2}^{T}
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right] \hat{x_{c}}=\left[\begin{array}{ll}
A_{1}^{T} & A_{2}^{T}
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right]
$$

Combining Observation Equation Systems

functional model: $\quad\left[\begin{array}{l}l_{1} \\ l_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right] \hat{x}_{c}$
stochastic model:

$$
\Sigma\left(\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\sigma_{1}^{2} \Sigma_{11} & \sigma_{12} \Sigma_{12} \\
\sigma_{12} \Sigma_{12} & \sigma_{2}^{2} \Sigma_{22}
\end{array}\right]
$$

adjustment:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A_{1}^{T} & A_{2}^{T}
\end{array}\right] \Sigma^{-1} } & {\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right] \hat{x}_{c}=\left[\begin{array}{ll}
A_{1}^{T} & A_{2}^{T}
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right] } \\
& =>\text { Correlations can be included } \\
& =>\text { Observation equations are not available }
\end{aligned}
$$

Modification of Calc/Solve

=> extract observation equations

Test dataset: CONT02
Simulation of two solutions

- different databases of the same session (IVS data server \& BKG)
=> different selection of outliers, clock breaks, calibration, ...
- different analysis options
=> different parameterization of ZWD, gradients, different weighting, a priori values for ZWD and gradients

Combination at the level of observation equations
=> combined parameters, correlations

	Input
	A_{i}... jacobian matrix
	$l_{i} \ldots$ vector of observations
	$\sum\left(l_{i}\right)$... covariance matrix of obs.
	$\sigma_{0 \mathrm{i}}^{2}, \sigma_{0 \mathrm{ij}} \ldots$ a priori (co)variance
	components

Output

$\hat{x}_{c} \quad \ldots$ combined estimates $\sum\left(\hat{x}_{c}\right)$... covariance matrix
$\sigma_{i}^{2}, \sigma_{i j} \ldots$ a posteriori (co)variance components
$\rho_{i j} \ldots$ correlations

> Variance- / Covariance Component Estimation

Validation

Combining 2 equal contributions (correlated by 1)
Consider / neglect correlations
=> estimated parameters: no effect

Combining 2 equal contributions (correlated by 1)
Consider / neglect correlations
=> estimated parameters: no effect
=> formal errors: too optimistic by $\sqrt{2}$

Combining 2 different contributions (correlated by ?)

$$
\text { Correlations } \quad \rho=\frac{\sigma_{i j}}{\sqrt{\left(\sigma_{i}^{2} \cdot \sigma_{j}^{2}\right)}}
$$

CONT02

=> Correlations 0.5-0.7
=> Level of correlations not constant

Correlations

Influence of correlations on estimated parameters

Influence of correlations on estimated parameters

$$
\mathrm{COMBI}_{\text {corr }}-\mathrm{COMBI}_{\mathrm{w} / \mathrm{o} \text { corr }}
$$

Correlations

Influence of correlations on formal errors

Correlations

Influence of correlations on formal errors

IVS combination

based on normal equations
=> Correlations cannot be included
=> too optimistic formal errors
formal errors

Determination of scaling factors

Assumption:

- combination = calculation of average
- Influence of correlations on formal errors (error propagation):

$$
\begin{aligned}
& \sigma_{\text {corr }}^{2}=\left[\frac{1}{n}, \cdots, \frac{1}{n}\right] \cdot\left[\begin{array}{ccc}
\sigma_{11}^{2} & \cdots & \sigma_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\sigma_{1 \mathrm{n}} & \cdots & \sigma_{n n}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right], \quad \sigma_{w / o \text { corr }}^{2}=\left[\frac{1}{n}, \cdots, \frac{1}{n}\right] \cdot\left[\begin{array}{ccc}
\sigma_{11}^{2} & & \\
& \ddots & \\
& & \sigma_{n n}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right] \\
& \Rightarrow \text { scaling factor }=\frac{\sqrt{\sigma_{\text {corr }}^{2}}}{\sqrt{\sigma_{w / o c o r r}^{2}}}, \quad n=\text { No ACs }
\end{aligned}
$$

- 6 ACs, equal precision for each AC, correlated by 0.6
=> scaling factor $=2$

IVS combination

Simulations:

- quantify the level of correlations between contributions to IVS combination => significant correlations between 0.5 and 0.7
- influence of correlations on
* estimated parameters: => small differences, but within formal errors
* formal errors: => too optimistic formal errors if correlations are neglected

IVS combination:

- based on normal equations
=> correlations cannot be included within the combination itself
- scale formal errors => factor of 2

Disadvantage: Simulations are carried out with one software only => smaller correlations using the results of different software packages?

Combination Observation Equations

Level of correlations by using different solution setups

analysis options	correlation
parameterization of ZWD \& gradients	~ 0.90
a prioris for ZWD \& gradients	~ 0.95
reference clock	~ 0.99
weighting	~ 0.80
different databases	~ 0.6
\& different analysis options	

Influence of correlations on estimated parameters

Validation of scaling factors

by empirical approach
Comparison with independ EOP series (e.g. Bulletin A)

$$
\begin{aligned}
& \text { diff single }=E O P_{\text {VLBI single }}-E O P_{\text {Bulla }} \\
& \text { diff }_{\text {combi }}=E O P_{\text {VLBI combi }}-E O P_{\text {Bulla }}
\end{aligned}
$$

Accuracy:

- WRMS of differences: $W R M S_{\text {single }}, W R M S_{\text {combi }}$
- formal errors of differences: $S T D_{\text {single }}, S T D_{\text {combi }}$

Ratios of combined and single solution should be equal:
scaling factor $\rightarrow \underbrace{(X) S T D_{\text {combi }}}_{W R M S_{\text {combi }}} \approx \frac{S T D_{\text {single }}}{W R M S_{\text {single }}}$

Validation of scaling factors

by empirical approach

$$
\frac{S T D_{\text {single }}}{W R M S_{\text {single }}} \quad \frac{S T D_{\text {combi }}}{W R M S_{\text {combi }}}
$$

Validation of scaling factors

by empirical approach

$$
\frac{S T D_{\text {single }}}{W R M S_{\text {single }}} \frac{\text { 2. } S T D_{\text {combi }}}{W R M S_{\text {combi }}}
$$

Ratio X-Pole (after scaling)

=> Assumptions to calculate scaling factor OK

