

Application of ray-tracing through the high resolution numerical weather model HIRLAM for the analysis of European VLBI

Susana García-Espada^{1,2}, Rüdiger Haas² Francisco Colomer¹

¹ Instituto Geográfico Nacional, Spain ² Chalmers University of Technology, Onsala Space Observatory, Sweden

- An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are caused by the tropospheric effects due to neutral atmosphere.
- In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses.
- A model of the troposphere based on direct calculation of the delay via raytracing through the Limited Area numerical weather prediction (NWP) HIRLAM 3D-VAR model is developed and applied to Europe VLBI data.
- The advantages of this model are the high spatial resolution (0.2 deg x 0.2 deg) and the high temporal resolution in prediction mode (every 3 hours).

- Delay of a signal propagating through the atmosphere
- Mapping functions
- Compute Delays through Ray-Tracing
- HIRLAM (High Resolution Limited Area Model)
- Application for the analysis of European VLBI
- Conclusions
- Future work

$$L(\epsilon,\phi) = \int_{S} n \, ds$$

Index of refraction

$$n - 1 = 10^{-6} N$$
$$\Delta L = 10^{-6} \int_S N(s) \, ds$$

S: path of the signal G: geometrically shorter path

Excess propagation path or path delay

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

$$\Delta L(\epsilon, \phi) = \int_{S} n \, ds - G$$

$$\Delta L(\epsilon, \phi) = \int_{S} (n-1) \, ds + S - G$$

Refractivity = Dry + Wet

$$N = k_1 \frac{p_d}{T} Z_d^{-1} + k_2 \frac{p_w}{T} Z_w^{-1} + k_3 \frac{p_w}{T^2} Z_w^{-1}$$

 p_d partial pressure of dry constituents p_w partial water vapor pressure T absolute temperature Z_d, Z_w compressibility factor for dry air and water vapor k_1, k_2, k_3 constants

$$\Delta L = \Delta L_w + \Delta L_h$$

MAPPING FUNCTIONS (I)

$$\Delta L(\epsilon) = \Delta L_w^z \cdot m_w(\epsilon) + \Delta L_h^z \cdot m_h(\epsilon)$$

$$m(\epsilon) = rac{1+rac{a}{1+rac{b}{1+c}}}{\sin\epsilon+rac{a}{\sin\epsilon+rac{b}{\sin\epsilon+c}}}$$

Niell Mapping Function (NMF)

Radiosonde data

Station height, latitude and day of the year

Isobaric Mapping Function (IMF)

- Raytracing through radiosonde data
- Height of the 200 mbar pressure level and the ratio of the wet path delay along a straight line at 3.3^o elevation and zenith delay

Vienna Mapping Function (VMF) CECMWF

 Raytracing through the numerical weather model ECMWF (European Centre for Medium-Range Weather Forecast) (2.5^o x 2.5^o)

HIRLAM Based Mapping Function (HBMF) Hirlam

 Raytracing through the numerical weather model HIRLAM (High Resolution Limited Area Model) (0.2^o x 0.2^o)

	ECMWF	HIRLAM
Spatial resolution	$2.5^{\circ} \times 2.5^{\circ}$	$0.2^{ m o}$ $ imes$ $0.2^{ m o}$
Number of pressure levels	15	31
Temporal resolution in post processing mode	6 hours	6 hours
Temporal resolution in prediction mode	6 hours	3 hours

 Atmospheric delays can be evaluated along the path of the ray originating from the direction of the radio emission source and passing through the atmosphere to a receiving antenna

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

$$\Delta L = 10^{-6} \int_S N(s) \, ds$$

Davis, J.L., T.A.H. Herring and A.E. Niell, "The Davis/Herring/Niell Raytrace program", 1987-1989

- Pressure, Temperature and Relative Humidity profile at a starting height above sea level
- Elevation angle of each observation
- No Azimuth angle dependance
- Profile time resolution (00h, 06h, 12h, 18h)
- Calculate 'Path Delay' through the atmosphere

- High Resolution Numerical Weather Model (NWM)
- Limited Area Model (Europe)
- Synoptic scale (displaying conditions simultaneaously over a broad area)
- Numerical short-range (<48h) weather forecasting system
- Hydrostatic grid point model

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

HIRLAM (High Resolution Local Area Model) (II)

Spatial resolution 0.2° x 0.2° - 22 to 5 km horizontally - 16 to 60 levels vertically

MINISTERIO DE FOMENTO

- Temporal resolution

 Analysis: 6 hours assimilation cycle (00h, 06h, 12h, 18h)
 3 hours cycle also
 - available
- Initial and boundary conditions

- ECMWF model (European Centre for Medium-Range Weather Forecast)

HIRLAM (High Resolution Local Area Model) (III)

HIRLAM (High Resolution Local Area Model) (IV)

GOBIERNO DE ESPAÑA

Hirlam Surface Pressure vs Pressure@Stations

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

HIRLAM data used for 15 EURO experiments

- EURO75 to EURO89 (2005 to 2007)
- 12 different stations involved
 - CRIMEA, DSS65A, EFLSBERG, MATERA, MEDICINA, METSAHOV, NOTO, NYALES20, ONSALA60, SVETLOE, WETTZELL, ZELENCHK
- Badary station not included in HIRLAM grid (EURO87)
- HIRLAM files: 22 km horizontal resolution, 40 vertical levels and 6 hours resolution time (00h, 06h, 12h, 18h)
- Grid model: interpolation between the 4 nearest points around the station
- For each site and time epoch
 - Pressure, Temperature and Relative Humidity for 40 vertical levels from HIRLAM model

Zenith Wet Delays time series

Comparison WRMS Residual Delay

GOBIERNO DE ESPAÑA MINISTERIO DE FOMENTO

Differences WRMS Residual Delay between NMF and HIRLAM

- 9/15 experiments improved WRMS
- 4/15 experiments get worse WRMS

GOBIERNO DE ESPAÑA

MINISTERIO DE FOMENTO

GOBIERNO DE ESPAÑA MI

MINISTERIO DE FOMENTO

Baselines repeatibility

- We have used HIRLAM to model slant delay.
- Estimated ZWD are smaller and closer to 0 than using NMF.
- WRMS improves in 9/15 experiments with HIRLAM approach.
- We haven't found significance changes in baseline repeability.
 - NWM resolution is no good enough for some stations.

- Create 4D Ray-Tracing program fully elevation and azimut dependent for each observation using HIRLAM profiles.
- Use forecast HIRLAM profiles combinated with analysis to improve time resolution (3 h).
- Calculate HIRLAM based mapping functions to compare with.
- Use HIRLAM to estimate wet delays and NMF to estimate dry delays.

Thank you for your attention!

Contacts:

Susana García-Espada s.gespada@oan.es

Rüdiger Haas rudiger.haas@chalmers.se

Francisco Colomer

f.colomer@oan.es