

Global VLBI observations of weak extragalactic radio sources: Imaging of candidates to align the VLBI and Gaia frames

<u>G. Bourda</u>	Laboratoire d'Astrophysique de Bordeaux (LAB), France
A. Collioud	LAB, France
P. Charlot	LAB, France
R. Porcas	MPIfR, Bonn, Germany
S. Garrington	Jodrell Bank Observatory, UK

6th IVS General Meeting – University of Tasmania

Context

By 2015-2020: Two extragalactic celestial reference frames available

Context

By 2015-2020: Two extragalactic celestial reference frames available

Linking these 2 frames is important:

- to ensure continuity of the fundamental celestial reference frame
- to register optical & radio positions with the highest accuracy

Gaia-Radio frames alignment

• Requirements:

- Several hundreds of common sources
- ✓ With a uniform sky coverage
- ✓ Link sources must have:
 - Accurate Gaia position \rightarrow Optically-bright (V \leq 18)
 - Accurate VLBI position \rightarrow Good astrometric quality (point-like VLBI structure)

Gaia-Radio frames alignment

• Requirements:

- ✓ Several hundreds of common sources
- ✓ With a uniform sky coverage
- ✓ Link sources must have:

Accurate Gaia position \rightarrow Optically-bright (V ≤ 18)

Accurate VLBI position \rightarrow Good astrometric quality (point-like VLBI structure)

• Current status:

- ✓ <u>ICRF1</u>: 10% of ICRF1 sources suitable (*Bourda et al., 2008*)
- ✓ <u>ICRF2</u>: < 50% of *defining* sources with a proper optical counterpart

Gaia-Radio frames alignment

• Requirements:

- ✓ Several hundreds of common sources
- ✓ With a uniform sky coverage
- ✓ Link sources must have:

Accurate Gaia position \rightarrow Optically-bright (V ≤ 18)

Accurate VLBI position→ Good astrometric quality (point-like VLBI structure)

• Current status:

- ✓ <u>ICRF1</u>: 10% of ICRF1 sources suitable (*Bourda et al., 2008*)
- ✓ <u>ICRF2</u>: < 50% of *defining* sources with a proper optical counterpart

→ Need to find new radio sources suitable for accurate Gaia–VLBI alignment

- <u>Idea</u>: New candidates \rightarrow Weak sources
- Specific VLBI observing program designed (with EVN & VLBA)

Our project

- <u>Idea</u>: New candidates \rightarrow Weak sources
- Specific VLBI observing program designed (with EVN & VLBA)
- <u>Observing Sample</u>: 447 weak extragalactic radio sources
 - ✓ NVSS catalog (excluding ICRF and VCS sources)
 - ✓ Optical magnitude $V \le 18$
 - ✓ Total flux density (NVSS) \ge 20 mJy

$$\checkmark \delta \ge -10^{\circ}$$

NRAO VLA Sky Survey (Condon et al., 1998)

Our project

Very Long

- <u>Idea</u>: New candidates \rightarrow Weak sources
- Specific VLBI observing program designed (with EVN & VLBA)
- <u>Observing Sample</u>: 447 weak extragalactic radio sources
 - ✓ NVSS catalog (excluding ICRF and VCS sources)
 - ✓ Optical magnitude V \leq 18
 - ✓ Total flux density (NVSS) \ge 20 mJy
 - $\checkmark \delta \ge -10^{\circ}$

NRAO VLA Sky Survey (Condon et al., 1998)

- **Observing Strategy**:
 - 1. VLBI detection
 - 2. Imaging

(Bourda et al., 2010a, A&A submitted) (Bourda et al., 2010b, A&A submitted)

3. Accurate astrometry (for the most compact sources)

Step 1: VLBI detection

- Two 48-hours experiments
 (S/X dual-frequency geodetic style @ 1Gb/s)
 - EC025A: June 2007 224 sources
 - EC025B: October 2007 223 sources

Step 1: VLBI detection

- Two 48-hours experiments (S/X dual-frequency geodetic style @ 1Gb/s)
 - EC025A: June 2007 224 sources
 - EC025B: October 2007 223 sources

Weak sources in VLBI

→ High sensitivity necessary

→ Need large antennas & high recording rate

Step 1: VLBI detection

- Two 48-hours experiments
 (S/X dual-frequency geodetic style @ 1Gb/s)
 EC025A: June 2007 224 sources
 - EC025B: October 2007 223 sources

Weak sources in VLBI

→ High sensitivity necessary

→ Need large antennas & high recording rate

• S/X detection rates:

EC025A ~ 94 %Overall detection rate: ~ 89 %EC025B ~ 82 %(398 sources detected)

Step 2: Imaging

• Pilot imaging experiment

- \checkmark 25% of the sources detected
- ✓ March 2008 48 hours
- ✓ Global VLBI array (VLBA + EVN)
- ✓ S/X dual-frequency geodetic style @ 512 Mb/s

Some very good link sources

0850+284 VLBA 8.409 GHz 2008-03-07

1034+574 VLBA 8.409 GHz 2008-03-07

8-10 February 2010, Hobart – Australia

6th IVS General Meeting – University of Tasmania

but also some not so good link sources...

1319+006 VLBA 8.409 GHz 2008-03-07

Relative Decl. (milliarcsec) 0 0 -5 0 -5 5 Relative R.A. (milliarcsec)

1522+669 VLBA 8.409 GHz 2008-03-07

6th IVS General Meeting – University of Tasmania

8-10 February 2010, Hobart - Australia

^{6&}lt;sup>th</sup> IVS General Meeting – University of Tasmania

⁸⁻¹⁰ February 2010, Hobart - Australia

6th IVS General Meeting – University of Tasmania

Step 2: Imaging

• Pilot imaging experiment

- \checkmark 25% of the sources detected
- ✓ March 2008 48 hours
- ✓ Global VLBI array (VLBA + EVN)
- ✓ S/X dual-frequency geodetic style @ 512 Mb/s

• **Results**

- ✓ All 105 sources successfully imaged at both X & S bands
- ✓ Dynamic range 1:100
- ✓ ~50% point-like or compact sources

Next stages

- VLBI imaging follow up
 - ✓ 293 remaining sources
 - Proposal submitted in October 2009 144 hours
 - ✓ Accepted (2 or 3 sessions) → Begins in March 2010

Next stages

- VLBI imaging follow up
 - ✓ 293 remaining sources
 - ✓ Proposal submitted in October 2009 144 hours
 - ✓ Accepted (2 or 3 sessions) → Begins in March 2010

• Astrometry

- ✓ Carry out global astrometry on the most compact sources (200 ?)
- ✓ Positions wanted to better than $<100 \mu as$
- ✓ Proposal in 2010

Conclusion & Prospects

Conclusion & Prospects

- In the future:
 - ✓ Cover southern hemisphere
 - ✓ Astrophysics: Issues of core shifts

Thanks for your attention ...

Thanks to IAG for travel support !!

AGN geometry/physics & ICRF-Gaia alignment

ICRF–Gaia alignment:

Determining AGN optical/radio core shifts

Constrain AGN general geometry

Recent estimation: ~100 µas (Kovalev et al. 2008)

AGN unified model Urry & Padovani, 1995

Zoom: < 100 mJy region

