An Improved Lunar Gravity Field Model from SELENE and Historical Tracking Data

K. Matsumoto ${ }^{1}$, S. Goossens ${ }^{1}$, Y. Ishihara ${ }^{1}$, Q. Liu², F. Kikuchi¹, T. Iwata ${ }^{3}$, N. Namiki4, H. Hanada ${ }^{1}$, H. Noda ${ }^{1}$, N. Kawano², RSAT/VRAD mission team

With special thanks to Katsunori Shibata ${ }^{1}$, F. G. Lemoine ${ }^{5}$, D. D. Rowlands ${ }^{5}$, Jinsong Ping ${ }^{2}$, Simon Ellingsen ${ }^{6}$, Brett Reid ${ }^{6}$, Wolfgang Schuluter ${ }^{7}$, and Yusufu Aili ${ }^{8}$
${ }^{1}$ RI ${ }^{0}$ E Project, National Astronomical Observatory of Japan ${ }^{2}$ Shanghai Astronomical Observatory
${ }^{3}$ Japan Aerospace Exploration Agency ${ }^{4}$ Chiba Institute of Technology NASA Goddard Space Flight Center ${ }^{6}$ University of Tasmania ${ }^{7}$ Geodetic Observatory Wettzell ${ }^{8}$ Urumqi Astronomical Observatory

SELENE gravimetry

RSAT Mission

4-way Doppler for farside coverage

First half of this talk

VRAD Mission

Differential VLBI
Doubly differenced 1-way range

Second half

Status of the SELENE satellites

- 2007.09.14 Launched from Tanegashima Space Center
- 2007.10.31 Start acquiring 4-way Doppler data
- 2008.07.23 One of four reaction wheels of Main satellite failed (AMD interval $12 \mathrm{~h} \rightarrow 6 \mathrm{~h}$)
- 2008.10.31 End of nominal mission
- 2008.12.26 Another wheel went out of order
\rightarrow put into thruster control mode
- 2009.01.30 The last 4-way Doppler data acquisition with 3 reaction wheels turned on
- 2009.02.12 Rstar (relay sub-satellite) crashed into the Moon because of its natural orbital evolution
- 2009.06.10 Controlled crash of the Main satellite
- 2009.06.29 The last tracking of Vstar (VLBI sub-satellite)

Data and analysis setting for SELENE Gravity Model version h (SGM100h) Tracking data

- SELENE:2007.10.20~2008.12.26 \& 2009.01.30 Doppler + range (no VLBI data)
- Historical: LO I-V, A15/16ss, Clementine, LP nominal mission, SMART-1

Setting

- NASA GSFC GEODYN II \& SOLVE system
- Expanded up to degree and order 100
- Ephemeris: DE421
- A Kaula-type constraint of $3.6 \times 10^{-4} / \mathrm{n}^{2}$
- Solar radiation pressure model SELENE Main: box + wing SELENE R/Vstar and other satellites : cannonball
- Mean arc length of Rstar $=2.6$ days
- VLBI data not included

For more detail, see Matsumoto et al., JGR Planets, in press.
This model is available online at SELENE Level 2 Database.

4-way Doppler data coverage achieved during the lifetime of Rstar

071031-090130

White solid line indicates the boundary between the near-side and the far-side

Old and new views of farside gravity field

LP100K

SGM100h

Topography-gravity correspondence

Free air gravity anomaly differences

SGM100h-LP100K

SGM100h-SGM90d

Min: -495mGal
Max: 544 mGa
RMS:
near-side 46 mGal
far-side 96 mGal
global 76 mGal

Min: -313mGal
Max: 355mGal
RMS:
near-side 43 mGal far-side 67 mGal global 57 mGal

Gravity anomaly errors from the full covariance matrix

SGM100h

Max : 62 mGal Nearside: 26 mGal Farside : 35 mGal

RMS degree variances

SGM100h gives more than one order of magnitude smaller formal errors with respect to LP100K for degrees 7-39.

Coefficient differences

The coefficient differences agree with the formal errors within a range of 3 sigmas for $n>8$, but there are larger deviations for the lower-degree terms. In particular, discrepancies exceeding 10 sigmas occur at degrees 2 and 3.

Low-degree coefficients

- Which model is better?
- Moments of inertia can be used as an index of coefficient accuracy of J_{2} and C_{22}.
- Principal moments of inertia $A, B, C(A<B<C)$ can be calculated using gravity coefficients J_{2} and C_{22}, and libration parameters beta and gamma which come from Lunar Laser Ranging analysis.
- This constitutes an over-determined system, with four constraints on three parameters.
- Provided that the libration parameters are accurate enough, better J_{2} and C_{22} should result in better self-consistency.

Four different solutions for the three principal moments of inertia. Error bars are based on five times formal error.

Contribution measures

Harmonic degree

Correlation between gravity and topography

Distribution of VLBI stations for SELENE

Antenna time allocated for SELENE VLBI observations in nominal mission period (- Oct. 2008)

Day of Month

Antenna time

 allocated for SELENE VLBI observations in extended mission period (Nov. 2008 June 2009)Hobart and Urumqi stations participated in the last international observation in Feb. 2009, just before the end of Rstar's lifetime.

Same-beam differential VLBI

$\varphi_{\mathrm{R}(\mathrm{S} 1-\mathrm{S} 2)}(\mathrm{t})-\varphi_{\mathrm{V}(\mathrm{S} 1-\mathrm{S} 2)}(\mathrm{t})$

R: Rstar, V: Vstar S1,S2: VLBI stations

Antenna beam

S3 02:04UT

S-band Samebeam signal @ Ishigaki 2007.11.07

2-way Doppler and range have line-of-sight sensitivity. VLBI data add plane-of-sky sensitivity and can help to improve orbit determination for Rstar and Vstar.

Rstar total overlaps

Vstar total overlaps

VLBI residual levels with different data weight

VLBI data fit

Rstar total overlaps

An example of the same-beam VLBI residuals

 VLBI data weight $=1 \mathrm{~cm}, 4$ VERA stations, 6 baselines

Not a white noise. VLBI senses something. Errors in non-conservative forces?

Error spectrum of the new gravity model which includes the S-band same-beam VLBI data

Differences between SGM100h and the VLBI-included model

Far side \quad Near side

Farside gravity filed is affected through 4-way Doppler measurements for which Rstar orbit serves as a reference.

Does VLBI model improve the correlation with topography?

Correlation with topography localised over spot on far side

Orbit overlaps for LP 1998 data

total overlaps

Summary $1 / 2$

- Historical tracking data + SELENE range \& Doppler data \rightarrow SGM100h model which is available at SELENE Level 2 database.
- Farside gravity errors are drastically reduced.
- SGM100h produces a correlation with SELENE-derived topography as high as about 0.9 , through degree 70 .
- The gravity coefficients below degree and order 70 are now determined by real observations with contribution factors larger than 80 percent.

Summary 2/2

- VLBI data improve orbits of R/Vstar, and thus improve the gravity field, especially over the far side.
- Orbit consistency for low lunar orbits also improves with this model.
- Improvements in lower degree coefficients are modest at this moment.

Acknowledgements

We would like to express our sincere appreciation to all the collaborators, and also to IVS, for helping us coordinate and realize the SELENE international VLBI observations.
Thank you!!

Acknowledgements

The authors appreciate the contribution of all the engineers of NEC/Toshiba Space Systems Ltd. (NTS), Nippon Antenna Co. Ltd., and Nippi Corporation who diligently developed the onboard instruments and subsatellites. We also express thanks to the entire staff of the SELENE mission.

The gravity experiments conducted during the SELENE mission would never have been achieved without the prominent expertise and profound knowledge of Mr. Fumio Fuke, an NTS engineer who passed away two months after the mission was launched. We express sincere thanks to him for his contributions to science and mourn his passing and the loss it entails for Japanese space development.

Backup slides

Localized RMS degree variances

Solutions without a priori constraint

With the farside data coverage achieved, even with a small data gap still remaining in the northern hemi-sphere, it is possible to obtain a realistic gravity expansion up to degree and order 70 without any a priori constraint.

Elliptical signature of the South Pole-Aitken Basin

Distance from the center [km]
Bouguer gravity anomaly around SPA degree and order up to 60

An example of time-wise data coverage of SELENE tracking data

Time-wise data coverage
 (face-on)

Observation mode

Zenith atmospheric delay By GPS

Qinghui LIU et. al Adv. Space Res, 2007

New method:
Period of same-beam observations becomes long

Summary of tracking data used for SGM100h (SELENE Gravity Model)

	Satellite	Data type	Amount	Arc length	Data weight
Far side	SELENE 4-way	Doppler	67,786	2.33 days	$1 \mathrm{~mm} / \mathrm{s}$
Near side	SELENE Main	Doppler UDSC	1,786,771	12 hours *	$1 \mathrm{~mm} / \mathrm{s}$
		Doppler GN			$2 \mathrm{~mm} / \mathrm{s}$
		Range	62,438		5 m
	SELENE Rstar	Doppler	159,269	2.33 days	$1 \mathrm{~mm} / \mathrm{s}$
		Range	150,470		5 m
	SELENE Vstar	Doppler	42,852	2.4 days	$1 \mathrm{~mm} / \mathrm{s}$
		Range	35,386		5 m
	LO I-V	Doppler	6,301,236	12 hours	$4.5 \mathrm{~mm} / \mathrm{s}$
	A15/16ss	Doppler		8 hours	$4.5 \mathrm{~mm} / \mathrm{s}$
	Clementine	Doppler		2 days	$3 \mathrm{~mm} / \mathrm{s}$ (Pomonkey 10 mm / s)
		Range			4 m
	LP nominal mission	Doppler		2 days	$2 \mathrm{~mm} / \mathrm{s}$
		Range			4 m
	SMART-1	Doppler		15 hours	$10 \mathrm{~mm} / \mathrm{s}$
				* 6 hours	fter 2009.07

SGM90d and SGM100h

SGM90d
Namiki et al. (2009) based on 5 -month of SELENE data plus historical data

SGM100h
Matsumoto et al. (submitted to JGR) based on 14-month of SELENE data plus historical data

Far-side comparison between SGM90d and SGM100h

| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -450 | -350 | -250 | -150 | -50 | 50 | 150 | 250 | 350 | 450 | 550 |

SGM90d
Namiki et al. (2009) based on 5-month of SELENE data plus historical data

| -450 | -350 | -250 | -150 | -50 | 50 | 150 | 250 | 350 | 450 | 550 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SGM100h
Matsumoto et al. (submitted to JGR) based on 14-month of SELENE data plus historical data

