

6th IVS General Meeting 2010 Reliability and Stability of VLBI-derived Sub-Daily EOP Models

 $\begin{array}{rll} \mbox{Thomas Artz}^1 & \mbox{Sarah B\"ockmann}^1 & \mbox{Laura Jensen}^1 \\ & \mbox{Axel Nothnagel}^1 & \mbox{Peter Steigenberger}^2 \end{array}$

 $^1 {\rm Institut}$ für Geodäsie und Geoinformation, Universität Bonn $^2 {\rm Institut}$ für Astronomische und Physikalische Geodäsie, TU München

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

February 10th, 2010

IVS GM 2010

- the IERS Conventions recommend a model based on ocean tidal models and nutation
- various origins of EOP variations due to tidal torques
 - tidal variations in oceans and atmosphere
 - non-tidal variations: thermally driven variations
 - tri-axiality of the Earth

empirical sub-daily models of the Earth's rotation (sdER-Models) that include the integral effect might be estimated from space geodetic techniques

- IERS model explains the majority of sub-daily EOPs
- VLBI measures higher amplitudes

VLBI is capable to measure sub-daily EOPs

universität**bonn**

IVS GM 2010

different sub-daily models: IERS 2003 vs. empirical VLBI

annual and semi-annual signal in EOP rates

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

February 10th, 2010

various models/results

$$\Delta X(t) = \sum_{j=1}^{n} -p_{j}^{c} \cos \psi_{j}(t) + p_{j}^{s} \sin \psi_{j}(t)$$

$$\Delta Y(t) = \sum_{j=1}^{n} p_{j}^{c} \sin \psi_{j}(t) + p_{j}^{s} \cos \psi_{j}(t)$$

$$\Delta UT1(t) = \sum_{j=1}^{n} u_{j}^{c} \cos \psi_{j}(t) + u_{j}^{s} \sin \psi_{j}(t)$$

∃ >

universität**bonn**

deriving empirical sdER-Model

$$\Delta X(t) = \sum_{j=1}^{n} -p_{j}^{c} \cos \psi_{j}(t) + p_{j}^{s} \sin \psi_{j}(t)$$
$$\Delta Y(t) = \sum_{j=1}^{n} p_{j}^{c} \sin \psi_{j}(t) + p_{j}^{s} \cos \psi_{j}(t)$$
$$\Delta UT1(t) = \sum_{j=1}^{n} u_{j}^{c} \cos \psi_{j}(t) + u_{j}^{s} \sin \psi_{j}(t)$$

Observation
new parameters

$$\mathbf{A} = \left(\dots, \frac{\partial \tau}{p_j^c}, \frac{\partial \tau}{p_j^c}, \dots\right)$$

$$\mathbf{N} = (\mathbf{A}^T \boldsymbol{\Sigma}^{-1} \mathbf{A})$$

$$\mathbf{n} = \mathbf{A}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta} \tau$$

$$\mathbf{x} = \mathbf{N}^{-1} \mathbf{n}$$

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

$$\Delta X(t) = \sum_{j=1}^{n} -p_{j}^{c} \cos \psi_{j}(t) + p_{j}^{s} \sin \psi_{j}(t)$$
$$\Delta Y(t) = \sum_{j=1}^{n} p_{j}^{c} \sin \psi_{j}(t) + p_{j}^{s} \cos \psi_{j}(t)$$
$$\Delta UT1(t) = \sum_{j=1}^{n} u_{j}^{c} \cos \psi_{j}(t) + u_{j}^{s} \sin \psi_{j}(t)$$

Observation new parameters $\mathbf{A} = \left(\dots, \frac{\partial \tau}{p_j^c}, \frac{\partial \tau}{p_j^c}, \dots\right)$ $\mathbf{N} = (\mathbf{A}^T \boldsymbol{\Sigma}^{-1} \mathbf{A})$ $\mathbf{n} = \mathbf{A}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta} \tau$

 $\mathbf{x} = \mathbf{N}^{-1}\mathbf{n}$

Solution

pseudo observations (y: PM & UT) $\mathbf{B} = \left(\frac{\partial \mathbf{y}}{p_j^c}, \frac{\partial \mathbf{y}}{p_j^s}, \dots\right)$ $\mathbf{x} = (\mathbf{B}^T \mathbf{W} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{W} \mathbf{y}$

$$\Delta X(t) = \sum_{j=1}^{n} -p_{j}^{c} \cos \psi_{j}(t) + p_{j}^{s} \sin \psi_{j}(t)$$
$$\Delta Y(t) = \sum_{j=1}^{n} p_{j}^{c} \sin \psi_{j}(t) + p_{j}^{s} \cos \psi_{j}(t)$$
$$\Delta UT1(t) = \sum_{j=1}^{n} u_{j}^{c} \cos \psi_{j}(t) + u_{j}^{s} \sin \psi_{j}(t)$$

Observation
new parameters

$$\mathbf{A} = \left(\dots, \frac{\partial \tau}{p_j^c}, \frac{\partial \tau}{p_j^c}, \dots \right)$$

$$\mathbf{N} = (\mathbf{A}^T \boldsymbol{\Sigma}^{-1} \mathbf{A})$$

$$\mathbf{n} = \mathbf{A}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\Delta} \tau$$

$$\mathbf{x} = \mathbf{N}^{-1} \mathbf{n}$$

Solution

pseudo observations (y: PM & UT) $\mathbf{B} = \left(\frac{\partial \mathbf{y}}{p_j^c}, \frac{\partial \mathbf{y}}{p_j^s}, \dots\right)$ $\mathbf{x} = (\mathbf{B}^T \mathbf{W} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{W} \mathbf{y}$

Normal Equation N, n: highly resolved

PM & UT

$$\label{eq:normalized_states} \begin{split} \bar{\mathbf{N}} &= \mathbf{B}^{\mathbf{T}} \mathbf{N} \mathbf{B} \\ \bar{\mathbf{n}} &= \mathbf{B}^{\mathbf{T}} \mathbf{n} \\ \mathbf{x} &= \bar{\mathbf{N}}^{-1} \bar{\mathbf{n}} \end{split}$$

solution set-up

parameterization

- CRF w.r.t. ICRF2
- TRF w.r.t. ITRF2005
- B-spline (Gc, Pt, Hr)
- 58 axis offsets
- ZWD (20 min)
- gradients (6 h)

modelling

- APLO
- harmonic site position
- mean gradients
- nutation fixed: IAU2000A + VLBI
- sdER: IERS 2003

sdER-model

- observation level: model coeff. + daily EOPs
- Solution level: hourly PM & UT
- Solution NEQ level: 15 min PM & UT (CRF, TRF, axis fixed)

RMS of amp	I			
	Obs. level	Sol. level	NEQ level	diff. > $3 \cdot \sigma$
IERS 2003	0.42	0.50	0.45	at $S_{2}, Q_{1} \& K_{1}$
Obs. level		0.24	0.21	
Sol. level			0.30	

크

< ≣ >

PM w.r.t. IERS 2003

N2 M2 S2 K2

N2 ⊡ M2 + S2 X K2 O

 Obs.
 Sol.
 NEQ

 IERS 2003
 4.87
 5.06
 4.97

 Obs.
 Ievel
 1.90
 3.12

 Sol.
 Ievel
 2.93

▲ 伊 ▶ ▲ 臣 ▶

-≣->

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

February 10th, 2010

IVS GM 2010

zero terms: periods where no amplitude is expected

noise floor: below 0.6 μ s (UT); 7 μ as (PM)

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

February 10th, 2010

< 4 P ►

-

RMS amplitude differences w.r.t. IERS 2003 [μ as]						
	std. TRF, CRF		ZWD 60,	no har.	nutation	no apr.
		Axis fix ^a	GRAD 24	pos.	est.	sdER
UT	0.42	0.41	0.42	0.46	0.42	0.40
PM	4.87	4.98	5.06	5.29	5.00	4.89
^a Hr, G	c, Pt: B-spl	ine pos and velocities	estimated			

RMS a	amplitu	de differen	ces w	.r.t. II	ERS 200	3 [µas]			
	std.	TRF, CRF Axis fix ^a	ZW GRA	D 60, D 24	no har. pos.	nutation est.	no apr sdER		
UT PM ^a Hr, C	0.42 4.87	0.41 4.98 ne pos and velociti	0 5 es estimate	.42 .06 	0.46 5.29	0.42 5.00	0.40 4.89		
1 0.5	emi-Diurnal	UT1-TAI	N2 ⊡ M2 + S2 ×]	0.5	Diumal UT1-TA	AI	Q1 01 P1	
0 -0.5 -1	*	₫	K2 G	a ^s [µs]	0 -0.5 -1	*+	*	K1	
-1.5 + -2 -2.5 -2	-1.5 -1 -0 a ^c [μs	.5 0 0.5 1			-1.5 -2 -1.5 -1	-0.5 0 0.5 □	 1 1.5 2 ▶ ∢ ≣ ▶	≣ →	20

cummulative yearly solutions:

- 2009, 2008 + 2009, ..., $\sum_{i=1984}^{2009} y_i$
- WRMS of coeff. diff. & hypothesis test (propability 95%)

12

cummulative yearly solutions:

- 2009, 2008 + 2009, ..., $\sum_{i=1984}^{2009} y_i$
- WRMS of coeff. diff. & hypothesis test (propability 95%)

data of at least 12 years leads to a stable solution

amplitude repeatability

- 12-year solutions starting in 1986
- WRMS w.r.t. linear regression for each tidal term

temporal evolution?

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

IVS GM 2010

- agreement not perfect
- noise floor and formal errors comparable
- significant impact of analysis options
 - station position handling
 - troposphere parameterization
- with data of 12 years almost no significant change after adding one more year of data
- some terms might not be constant in time

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

NEQ transformation

correlations

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

IVS GM 2010

∃ ⊳

- ∢ 🗇 እ

correlations

Artz, Böckmann, Jensen, Nothnagel, Steigenberger

February 10th, 2010

IVS GM 2010

sideband constraints

크

< ∃ >

- stable solution: 12 years \Rightarrow **noise level?**
- 12-year solutions shifted by 1 year (starting in 1984 \Rightarrow 15)

noise level of solutions almost constant (starting in 1986)