# Acknowledgement

#### $\Box IAG + UP + CSIR$

- Made available funds to attend the 1<sup>st</sup> IVS General Meeting
- □ Some person(s) who introduced me to Space Geodesy
  - R. Haas (Chalmers University)

Scientific definition of Space Geodesy

Vienna group (Schuh & Boehm)

Instilled confidence in the analysis of Space Geodesy data

# Local oscillatory signals in geodetic tropospheric delay

 <sup>1</sup> Botai O. J., <sup>1</sup> <sup>3</sup> Combrinck L. W. <sup>1</sup> <sup>2</sup> Sivakumar V., <sup>1</sup> Rautenbach C. J., <sup>4</sup> Schuh H., and <sup>4</sup> Boehm J.
 <sup>1</sup> University of Pretoria <sup>2</sup>CSIR-South Africa <sup>3</sup> HartRAO
 <sup>4</sup>Vienna Technical University

## Contents

#### Introduction

- Long history of geodetic data
- Data and Method
- Data
- Method [Empirical Mode Decomposition (EMD), Independent Component Analysis (ICA) & Phase synchronization]

#### Test Results

- Intrinsic Mode Functions (IMFs)
- Independent Components (ICs)
- Phase synchronization

#### Summary

# Long history of geodetic data

- VLBI observations (e.g., since Jan 1979)
- GPS observations (since Jan 2005)
- SLR measurements
- Geodetic products: EOP, LoD, dUT1, station coordinates
- Working dictum:
   "the derived geodetic data has the required scientific accuracy"



Figure 1. ZWD and NEU at HartRAO between 2000 and 2005. Data source [1].

#### **Given Some of the reported analysis strategies in the literature**

- Bengtsson et al, (2004):-A global deterministic component of +0.36
   kg m<sup>-2</sup> per decade of IWV from ECMWF 40-year reanalysis data
- Jin et al., (2007):- used ZTD derived from GPS and computed a linear trend of **15 mm per decade**. These results also showed regional dependence
- Nilsson & Elgered, (2008):- used data from ground-based GPS and computed long-term linear trends ~0.2 -1.0 kg m<sup>-2</sup>
- In all these studies, a functional form of the trend is subjectively determined i.e. the function that represent the trend is preselected
- Are there no tractable & a robust way to decipher components in the data? **Data adaptive methods exist** e.g., Zhauhua et al., (2007)

#### □ Post-analysis strategies: a new direction

- ➤ Look at the series as a mixture of components e.g.,
- trend (a slowly evolving component that have a global span) & other quasi-periodic components & a noise component.
- Assume that these components are additive and fluctuate at different timescales.
- Extract components embedded in the data by use of nonparametric methods e.g. Empirical mode decomposition [2], Wavelets [4], Independent Component analysis [3]

#### Post-analysis strategies: a new direction

- Use a combined EMD-ICA algorithm to extract local oscillatory components.
- In this regard, the ZTD observations could be modeled as:

$$\mathbf{y}_{j}(t) = \sum_{i=1}^{N} \beta_{i,j} \mathbf{s}_{i}(t)$$

• Here, *s* are the signals components , *y* represent the measurement and j spans over the observation space.

6<sup>th</sup> IVS General meeting, Hobart, Tasmania, Australia. Feb 7-13

#### □ Post-analysis strategies: a new direction

• In matrix formulation, Y is the matrix of observations, S a matrix of underlying signals and noise (could Gaussian), observation model can be expressed as

# Y=AS+δ

• Then, determine whether the signal components have any linkage with known geophysical signals by calculating the synchronization index, see for example [5]

# Data & method

#### □ Six IVS stations: data span of ~ 11 years

| <b>IVS station Name</b> | Daily data records |
|-------------------------|--------------------|
| HartRAO                 | 4191               |
| Hobart26                | 4191               |
| Wettzell                | 4191               |
| Westford                | 4191               |
| Gilcreek                | 4191               |
| Sukub32                 | 4183               |

6<sup>th</sup> IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

# Data & method

Other geophysical signals (monthly anomalies)

- Quasi-Biennial Oscillation (QBO) derived from NCEP/NCAR reanalysis
- Southern Oscillation Index (SOI) from NCEP
- Sun Spot Number (SSN) available at www.sidc.oma.be
- Length of Day (LoD); an IERS product

# Method

- Extracting oscillatory components: EMD-ICA algorithm
- 1. Add iid white noise (with zero-mean and  $\sigma_{iid} = \lambda \sigma_0$ ) to ZTD. Here the noise parameter  $\lambda$  is arbitrary taken as 0.3
- 2. EEMD [2] to extract a set of ZTD IMFs.
- 3. Determine the Independent components using FastICA[3] on the IMFs obtained in 2.

# ICA model & clustering

• Simple linear model of the form

x = As

Here, A is the mixing matrix, s are the independent sources and x are signal components in the series. In practice, what is estimated in the inverse of pseudo inverse (also called the de-mixing matrix) such that

# Clustering

 For a data matrix: X = [x<sub>1</sub> x<sub>2</sub> --- x<sub>N</sub>] Here, N is the number of signal components (IMFs) with a total temporal span of K. Now run M times (with a selected criteria for initial conditions e.g., bootstrapping or randomizing or a combination of both [3]) to obtain

$$W = [W_i^T]^T$$
  $i=1, 2, ..., M$ 

de-mixing matrices.

# Clustering

- For each run, n<sub>i</sub> ICs are estimated.
- Use a clustering algorithm (e.g., Agglomerative Hierarchical clustering) and dissimilarity measure (can use the mutual correlation coefficient which is calculated via the de-mixing & the covariance matrix of the actual observations) to partition the set of all estimated ICs into disjoint clusters

# Clustering

- Use the cluster quality index to identify compact and isolated clusters.
- For each cluster and quality index, select the most central IC that is representative of the cluster.



Figure 3: Ranked station dependent quality index Iq of independent components derived from zenith total delay

2/9/2010

## Method

- Phase synchronization index via the analytic signal paradigm
- Hilbert-Transform both the ICs from ZTD and the known geophysical signals

$$\xi = A_x^H(t) e^{j\phi_x^H(t)}$$

 Compute the phase difference of the analytic signal component pairs (here, *n:m* define the phase locking ratio)

$$\Delta \phi_{xy}^{H}(t) = n \phi_{x}^{H}(t) - m \phi_{y}^{H}(t)$$

6<sup>th</sup> IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

## Method

Phase synchronization index via the analytic signal paradigm

• determine the phase synchronization index assuming a1:1 phase locking ratio

$$\eta = \sqrt{\left\langle \cos\Delta\phi_{xy}^{H}(t) \right\rangle_{t}^{2} - \left\langle \sin\Delta\phi_{xy}^{H}(t) \right\rangle_{t}^{2}}$$

6<sup>th</sup> IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

#### **Test results**

## □ Adaptive decomposition of ZTD

# of modes (we have 7)dependent on the temporalspan of the data

6<sup>th</sup> & 7<sup>th</sup> modes have been combined to generate a nonlinear trend.

≻High fluctuating mode(s):
1& 2 exhibit a period ~ 1
month

➢ 3<sup>rd</sup> & 4<sup>th</sup> modes have seasonal and annual periods respectively



Figure 4: Empirical Mode Functions (IMFs) of ZTD series at six IVS stations with site dependent modes of fluctuations.

6th IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

#### **Test results**

#### □ Independent oscillatory components from ICA

The cluster quality index is used to rank the ICs in each IVs station

Select ICs with high degree of localization.

| Station  | ZTD        | G.S  |
|----------|------------|------|
| Tsukub32 | 1, 3, 4    | 3,4  |
| Wettzell | 1, 2, 3, 4 | -do- |
| Westford | 1, 2, 3    | -do- |
| Gilcreek | 1, 2, 6    | -do- |
| HartRAO  | 1, 2       | -do- |
| Hobart   | 1, 2, 3    | -do- |



Figure 5: Estimated independent components in ZTD.

6th IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

## **Test results**

#### ☐ The angle strength of the phase angle difference

| Station      | ZTD                                             | η                                                      |
|--------------|-------------------------------------------------|--------------------------------------------------------|
| Tsukub3<br>2 | 1-3; 1-4;<br>3-3; 3-4;<br>4-3; 4-4              | 0.47; 0.46;<br>0.47; 0.46;<br>0.47; 0.45               |
| Wettzell     | 1-3; 1-4;<br>2-3; 2-4;<br>3-3; 3-4;<br>4-3; 4-4 | 0.48;0.58;<br>0.47; 0.62;<br>0.43; 0.61;<br>0.42; 0.53 |
| Westford     | 1-4; 2-4;<br>3-4                                | 0.46; 0.49;<br>0.46                                    |
| Gilcreek     | 1-3; 2-3;<br>6-3                                | 0.55; 0.58;<br>0.58                                    |
| HartRA<br>O  | 1-3; 2-4;<br>2-3; 2-4                           | 0.54; 0.53;<br>0.57; 0.50                              |
| Hobart       | 1-3; 1-4;<br>2-3; 3-3;<br>3-4; 2-4              | 0.57; 0.48;<br>0.57; 0.49;<br>0.56; 0.48               |



Figure 6: Phase synchrony index between pairs of geophysical signals.

6th IVS General Meeting, Hobart, Tasmania, Australia. Feb 7-13

# Summary

### □Non-linear dynamics

- EEMD-ICA robustly extract tractable signal components that carry important geophysical information
- The signal components exhibit spatial-temporal signature that characterises the underlying process
- ZTD signal components have dynamical coupling that exhibit spatial dependence