

#### 6<sup>th</sup> IVS GM

Feb. 10, 2010

# Lunar, Martian, and Jovian Geodesy and Science Mission using VLBI and Astrometrical Technology

T. Iwata<sup>1\*</sup>, H. Hanada<sup>2</sup>, H. Noda<sup>2</sup>, F. Kikuchi<sup>2</sup>,
S. Tazawa<sup>2</sup>, H. Kunimori<sup>3</sup>, K. Matsumoto<sup>2</sup>,
K. Imai<sup>4</sup>, Y. Ishihara<sup>2</sup>, Y. Harada<sup>2</sup>, and S. Sasaki<sup>2</sup>

<sup>1</sup>ISAS / JAXA, <sup>2</sup>RISE / NAOJ, <sup>3</sup>NICT, <sup>4</sup>Kochi National College Tech.

\* 岩田 隆浩: iwata.takahiro@jaxa.jp



#### Selenodetic, Areodetic & Radio Astronomical Mission Candidate

| selenode   | SELENE-#                                         | PI                |         |
|------------|--------------------------------------------------|-------------------|---------|
| VLBI       | d-VLBI : Differential VLBI                       | 2                 | Kikuchi |
|            | i-VLBI : Inverse VLBI                            | <mark>2</mark> /3 |         |
| LLR        | Lunar Laser Ranging                              | 2                 | Noda    |
| ILOM       | In situ Lunar Orientation<br>Measurement         | 3                 | Hanada  |
| areodetic  | MELOS-#                                          | PI                |         |
| FWD        | Four Way Doppler                                 |                   | Harada  |
| VLBI       | i-VLBI : Inverse VLBI                            | (tentative        |         |
| radio astr | onomical observations                            | SELENE-#          | PI      |
| LLFAST     | ST Lunar Low Frequency<br>Astronomical Telescope |                   | Iwata   |

#### **Purpose of Selenodetic Observations**

| selenode | etic observations                                   | purpose                                      |  |
|----------|-----------------------------------------------------|----------------------------------------------|--|
| VLBI     | d-VLBI : Differential VLBI<br>i-VLBI : Inverse VLBI | Gravity<br>improvement                       |  |
| LLR      | Lunar Laser Ranging                                 | Libration<br>(Lunar rotation<br>variability) |  |
| ILOM     | In situ Lunar Orientation Measurement               |                                              |  |

Questionnaires for the left mystery of the Moon
> Is there a core in the Moon ?
> Is the core metallic ?
> Is the metallic core liquid ?
> Is there an inner core center of the liquid core ?

#### Former 4-way Doppler measurement & Differential VLBI by KAGUYA



Direct orbital determination for KAGUYA Orbiter above the far side using OKINA V

Lunar gravity map above the far side

ex. Matsumoto et al., this GM.

Multi-frequency, phase-delay differential VLBI observation for OKINA/OUNA V Precise positioning with the accuracy of ~20cm cf. RARR ; ~100m

#### Scientific goal for SELENE and post-SELENE



degree of gravity vs. structure

SELENE (KAGUYA) higher : local surface / inner structure

> mechanism of isostasy mascon (anomaly mass concentration) dichotomy of inner structure

physical parameters of the core

lower : global structure







#### Physical parameters of core obtained from MOI

former LLR  $0.394 \pm 0.002$ Radio Navigation; RARR (LP75G)  $0.3932 \pm 0.0002$ ex. Fe-core assumption radius : 320+50/-100km (Konopliv *et al.*, 1998) improved by KAGUYA-VRAD  $0.393444 \pm 0.000096$ > accuracy of core density ; 20% (Goossens et al., 2009)

#### V

improving the reliability by using radio sources settled on the lunar surface.

**MOI: Momentum of inertia** 

\*) Heki (2004), Sasaki (1997), and references there in

 $C / MR^2$ 

<2/5

= core

size?

 $C/MR^{2}=0.393444$ 

 $C/MR^2 = 0.3770^3$ 

Fe/FeS

density?

Ι0

Moon

#### d-VLBI : Orbiter-Lander Differential VLBI by SELENE-2





Differential VLBI between Lunar surface and Orbiter V Libration and Lunar rotation variability can be observed

### i-VLBI : Inverse VLBI by SELENE-2



sensitivity for positioning;  $\sigma(x)$   $\sigma(x) = \sigma(△L); △L = L1-L2$  = 0.3 mmunder

#### **Inverse VLBI**

after Kawano et al., JGSJ, 45, 181 (1999)

- Phase differences between two sources are measured by multi-frequency (in S-band) 2way ranging.

- One station (not VLBI) on the ground observes these two sources (L1, L2).

Sensitivity for positioning
 (σ(x)) is free from the distance of the sources.

## i-VLBI : Inverse VLBI (left) vs. differential VLBI (right)



sensitivity for positioning;  $\sigma(x)$   $\sigma(x) = \sigma(\varDelta L); \quad \varDelta L = L1-L2$  = 0.3 mmunder

sensitivity for positioning;  $\sigma(x)$   $\sigma(x) = \sigma(\Delta L) * d / B$  = 6 cmunder  $\sigma(\Delta L)=0.3 mm$ R=400,000km, B=2,000km

# Configuration of LLR: Lunar Laser Ranging



## **ILOM : In-situ Lunar Orientation Measurement**

Observation of the physical librations related to dissipation in the Moon
with an accuracy of < 1 mas</li>





## ILOM telescope

## PZT (Photographic Zenith Tube) type telescope

Mercury Pool→

### Development of BBM

10 cmφ

CCD

Attitude Controller



Objective

Tiltmeter

(after Iwate University)

## Accuracy and subject for each selenodetic observation

| observations | accuracy | technical / theoretical subjects                                                                                                                                 |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d-VLBI       | 10 mas   | <ul> <li>Accuracies are restricted by lunar<br/>ephemeris and terrestrial ionosphere.</li> </ul>                                                                 |
| i-VLBI       | < 3 mas  | <ul> <li>Precise measurements for the<br/>phase delay in the space craft<br/>should be realized.</li> </ul>                                                      |
| LLR          | 10 mas   | <ul> <li>Optical transponder will improve the<br/>lack of data.</li> <li>Accuracies are restricted by lunar<br/>ephemeris and terrestrial ionosphere.</li> </ul> |
| ILOM         | <1 mas   | - The attitude instability caused by<br>thermal deformation should be<br>diminished.                                                                             |

### Mars ; 4-way Doppler (left ) and i-VLBI (right) using MELOS



#### **Goal ; Mechanisms of Polar Motion & LOD Variation**

# The atmosphere-cryosphere system are the most important source.



Loading by Atmosphere & Ice

Moment of Inertia Perturbation



LOD: length of day

Shear Stress by Wind Angular Momentum Interaction

#### LLFAST : Lunar Low Frequency Astronomy Telescope

- Moon-Earth Space VLBI to observe Jupiter.
- The first step to realize future large interferometer on the lunar far side.



Earth

# SELENE-2 Orbiter

Jupiter



### **Comparison of 1<sup>st</sup> and final observatory**

|                                        | 1 <sup>st</sup> ; LLFAST-1               |                                             | final ; LLFAST-X                              |  |
|----------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------------|--|
| configuration                          | Moon (1 element)-Earth<br>interferometer |                                             | Interferometer on the Moon (~100 elements)    |  |
| site Iunar orbit<br>(SELENE-2 Orbiter) |                                          | far side; to avoid terrestrial interference |                                               |  |
| frequency                              | 20 - 25 MHz *                            |                                             | 0.1 – 20 MHz                                  |  |
| targets J                              |                                          | <mark>upiter</mark> , Sun                   | galactic and extra-<br>galactic objects, etc. |  |
| LLFAST-1                               |                                          | LLFAST-X                                    | *) 15-20 MHz single dish                      |  |
|                                        |                                          |                                             |                                               |  |

#### Research for the mechanism of Jovian radio sources



De: Jovicentric Declination of the Earth

#### **Candidate Ground Stations**

#### Developments and test observations in 2007-2009



# Summary -

| observations                         | accuracy         | future works for collaboration                                                                    |  |
|--------------------------------------|------------------|---------------------------------------------------------------------------------------------------|--|
| selenodetic / areodetic observations |                  |                                                                                                   |  |
| d-VLBI                               | 10 mas           | - Seismological data is necessary to determine the core density.                                  |  |
| i-VLBI                               | < 3 mas          |                                                                                                   |  |
| LLR                                  | 10 mas           | - International collaborations for                                                                |  |
| ILOM                                 | 1 mas            | ground observation is necessary                                                                   |  |
| FWD/i-VLBI                           | (0.3 mm)         | to improve accuracies.                                                                            |  |
| radio astronomical observations      |                  |                                                                                                   |  |
| LLFAST                               | 5 mas<br>(20 km) | - International collaborations for ground observation is necessary to increase chances to detect. |  |