International VLBI Service for Geodesy and Astrometry: Evolution of Observing Programs

Nancy Vandenberg IVS Coordinating Center Director

http://ivscc.gsfc.nasa.gov

Very Long Baseline Interferometry - fundamental role -

Unique Technique for ♦ CRF Celestial Pole ◆UT1-UTC **Primary Technique for** EOP's (complete set of parameters) TRF (most precise) technique for long baselines)

Global Reference Frames and Related Products

September 23, 2003

IVS - International VLBI Service for Geodesy and Astrometry

IVS is a service of

- IAG International Association of Geodesy
- IAU International Astronomical Union
- FAGS Federation of Astronomical and Geophysical Data Analysis Services

IVS goals:

- To provide a service to support geodetic, geophysical and astrometric research and operational activities
- To promote research and development in the VLBI technique
- To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system

Main tasks of the IVS are: coordinate VLBI components, guarantee provision of products for CRF, TRF and the set of EOP's

- IVS inauguration was on March 1st, 1999
- 75 Permanent Components supported by 37 institutions in 16 countries

September 23, 2003

Technical Operations Workshop

Delay from observation to product availability

Two time series per wee

- IVS R1
- IVS R4

Results available

After approximately two weeks

Potential for Improvements

- Faster shipping
- e-VLBI
- Improved correlator processing factor

Combined EOP's are regular IVS Products

Example: DUT1 from R1 and R4

- Complete set of EOP's
- Combined Solution from 6 Analysis Centers
- 20-30% improved
 - ♦ accuracy
 - robustness

R1 & R4 since 2002

September 23, 2003

Fechnical Operations Workshop

UT1-UTC from INTENSIVES with reference to CO4 MK4: Wettzell - Kokee Park (black) and K4: Wettzell – Tsukuba (red)

UT1-UTC from Intensives relative to quadratic Interpolation of C04

IVS Observing Program 2003-4

Type and purpose	Planned sessions				Resources used		
	# sess	# stn	bw	corr	stn days	media	corr days
R1 - rapid turnaround EOP	52	7	256	all	364	96	130
T2 - TRF monitoring	12	8	56	Bonn, Wash	96	40	36
E3 - EOP using S2	12	5	128	Pent	60	40	36
R4 - rapid turnaround EOP	52	7	56	Wash	364	96	130
Regional - Europe, Pacific, Antarctic	12	8	56	Bonn, Mitaka	96	48	36
CRF - monitor, extend	12	3	56	Wash	36	12	36
R&D - technique improvement	10	8	256	Hays	80	42	30
RDV - 20-station with VLBA	6	10	128	VLBA	60		
Total sessions	168	(average ~3 per week)					
Resource usage	_				1156	374	434
Maximum available					1509	450	390

IVS Products

-	polar motio				
	UT1				

Products

n

accuracy

resolution

accuracy

resolution

accuracy

resolution

accuracy

accuracy

latency

latency

latency

freq. of sessions

freq. of sessions

freq. of solution

latency

- Δε, Δψ (nutation)
- TRF (x,x,z)
- CRF

Status

 $x_p \sim 100 \mu as, y_p \sim 200 \mu as$ 1-4 weeks... 4 months 1 day ~3 d/week 5... 20 μ s 1 week 1 day 100... 400 μ as 1-4 weeks... 4 months 1 day ~3 d/week 5-20 mm

0.25-3 mas

1 y 3-6 months

Goals(2002-2005)

x_p, y_p: 50 ... 25 μas 4 - 3 days...1day 1 day...1h... 10min 7d/week 3..... 2 μs 4 - 3 days 1day 1 day 10min 50...25 μas 4 - 3days... 1 day 1 day 7 d/week 5 2 mm 0.25 mas (improved distribution)

1 y 3 1 month(s)

Future Challenges

Increase temporal coverage

- remove weekend gaps
- automation for unattended observing
- need more observing time

Reduce time delay and reduce expenses

- deploy modern disc based recording system (Mk5)
- development of electronic data transfer (e-VLBI)

Improve global network configuration

- especially in the southern hemisphere
- encourage additional institutions and include the S2 and K4 technologies

Improve product robustness

- more analysis centers
- use of different software
- combination with other techniques

Further improvements required

- weekend gaps, automation for unattended observing needed
- reduce time delay and reduce expenses
 - employment of a modern disc based recording system (Mk5)
 - development of data transfer via the Internet (e-VLBI)
- global network configuration has to be improved
 - especially in the southern hemisphere
 - encourage additional institutions and include the S2 and K4 technologies
 - more observing time will required overall
- **timeliness, shorten turn-around time** at the correlators
 - better logistical organization of tape/disc transport or e-VLBI,
 - improving the correlation factor (MK5)
- robustness of the products, more analysis centers with different software

MK5 deployment plans

Replacement of MKIII/MKIV by MK5:
Vandenberg/Whitney memo and Mark 5 upgrade chart distributed in January

- Contacted all stations to request information on their upgrade plans
- Priority to upgrade correlators first, stations second, disk purchase third
- Transition from MKIII/IV to MK5 in the year 2003

IVS Mk5 Usage Plan

	Sep-03	Oct-03	Nov-03	Dec-03		
Correlator						
Bonn	8	8	8	8		
Haystack	4	4	4	8		
Washington	4	6	6	8		
	Sep-03	Oct-03	Nov-03	Dec-03		
Station						
Algonquin						
Effelsberg						
Fortaleza						
Gilmore Creek						
GGAO						Mk5-only
HartRAO						
Hobart						Mk5 partia
Kashima34						
Kokee Park						thin tape
Matera						
Medicina						
Noto						
Ny Alesund						
O'Higgins						
Onsala						
Seshan						
Simeiz						
Svetloe						
TIGO						
Tsukuba						
Urumqi						
Westford						
Wettzell						
Yebes						
Yellowknife						

Vision Paper 2010

- Working Group WG 3 : on the way to be established
- Needs for a vision paper:
 - Increasing requirements from IGGOS/IAG
 - RFI, frequency bands?
 - Aging antennas
- Goals:
 - Unattended observing, more regular
 - Improved global coverage
 - Electronic data transfer
 - Near real time correlation and product provision

Close collaboration with radio astronomers (SKA)