
Update Mark-5 Software.txt 10/16/2003

Update Mark-5 SoftwareUpdate Mark-5 Software
There is an updated version of a tar file now at:
http://web.haystack.edu/Mark5/Mark5A.tgz. You can download this file with a
browser. A copy is at: ftp://web.haystack.edu/dist/mark5/Mark5A.tgz. You can
download this file with ftp or with the script Mark5Update. This script uses
ftp
to download the tar file from Haystack, unzips and untars the tar file,
reinstalls the Jungo driver, and recompiles all the Mark-5 programs with
various
error checks. This is intended to make upgrading easier and less prone to
error.
After the latest upgrade, a copy of Mark5Update will be in the ~oper/bin
directory for next time (but see notes below). Shut down all Mark-5 programs,
then execute Mark5Update as root.
We'll try to keep this tar file updated whenever we make significant changes.
You can see the date on this file using just the directory (in time order):
http://web.haystack.edu/Mark5/.
If you can't or don't want to use Mark5Update, then make sure that no Mark-5
programs are running. Then the recommended untar and install procedure is (as
root):
tar xzvpP --same-owner -f Mark5A.tgz

with the path prefixed onto the file name if not the default. You can copy and
paste this line into your Linux shell. If this untar does not generate any
error
messages, then Mark5A (etc.) is ready to use, unless there is a Jungo driver
update contained in this tar file or in an update that you skipped over (see
notes below). If a Jungo driver re-installation is required after installing
this tar file, then follow the procedure summarized in paragraph (3)(E) on
page
3 of Mark5A Software. If you have trouble with individual programs such as
tstMark5A, then see the frequently asked questions, Mark-5 FAQ, especially Q6.
(But in some respects, both of these documents are out of date; sorry.) See
additional notes below.
Note that this tar file contains nothing like a full installation. This update
procedure works only on an already functional Mark-5 system.
Recent changes, additions, and fixes:
2003 October 08 (day 281); IMPORTANT: This version fixes a serious error in
ROT-delayed play as used by Haystack-designed correlators. The previous
version
(October 03) will NOT work with Haystack-designed correlators. This version of
the Mark5A software substantially complies with version 2.6 of "Mark 5A
command
set", and the 'DTS_id?' query with this version will return '2.6x', that is
version 2.6 with extensions (x), for command set revision. This version of
Mark5A was tested with input design revision (IDR) 0xb8 and output design
revision (ODR) 0x19 and should work with all previous IDRs and ODRs but
without
certain features as noted below. The 'DTS_id?' query shows this revision
information. The current version of Mark5Update is September 29.
Bug fix: 'play=...' with a ROT-start argument (as used by Haystack-designed
correlators) works again. Sorry.
Formal parsing (i.e., without -f 0 on the command line) has been made even
more
formal: Mark5A now returns an error if a keyword is followed by neither '?'
nor
'='. (Formerly a keyword alone (no '?' or '=') that was only a query was
executed as a query, and a keyword that could be a command was executed as a
command with defaults, if any. This caused some significant problems when a
user
intended but forgot a '?'.) Informal parsing mode (i.e., with -f 0 on the
command line) is unchanged.
The protection scheme has been modified as follows: A 'protect=off' command is

1

Update Mark-5 Software.txt 10/16/2003

required immediately preceding a 'reset=...' or 'VSN=...' command, even if
protection was already off. If not, an error return such as '!reset = 6 :
Previous protect=off required ;' explains what is needed. This is an extension
to version 2.6 of the writeup.
Bug fix: The default for 'scan_play=...' is now 'on' as in the writeup. (But
note that the default for 'play=...' is 'off', and 'record=...' has no
default.)

Bug fix: Several commands with error conditions were incorrectly returning '?'
instead of '='.
Bug fix: A 'play=on' command following a previous 'play=arm' is not permitted
to
have also a play pointer (byte number) (because the play pointer has already
been used by the 'play=arm'). This case now returns an error.
2003 October 03 (day 276); IMPORTANT: Please read also the notes down
through
the August-29 release below. This tar file contains a new release from
Conduant,
sslinux60.tgz, dated September 24, which contains libraries that work with
either version 2.x or 3.2 of the gcc compiler and its associated libraries.
This
version of the Mark5A software substantially complies with version 2.6 of
"Mark
5A command set", and the 'DTS_id?' query with this version will return '2.6x',
that is version 2.6 with extensions (x), for command set revision. This
version
of Mark5A was tested with input design revision (IDR) 0xb8 and output design
revision (ODR) 0x19 and should work with all previous IDRs and ODRs but
without
certain features as noted below. The 'DTS_id?' query shows this revision
information. The current version of Mark5Update is September 29.
The cc5A compile script was updated to check which version of gcc (and g++) is
present and update the symbolic link to the corresponding version of
libssapi.a.
This was done to allow this version to be installed on Red-Hat Linux versions
8.x and 9.0 (as well as 7.x). This was checked in a Red-Hat 9.0 machine.
SSErase was rewritten to deal with write protection on either bank A or B. The
operator will be asked whether to remove any write protection before erasing.
Certain illegal situations now generate proper error messages. Additional
information is now available from SSErase at msglev -1 (i.e., -m -1).
The 'play' and 'scan_play' commands and queries were rewritten to comply with
version 2.6 of the writeup except that distinguishing between between 'arming'
and 'armed' in the query responses is determined by calculated timings rather
than feedback from the Conduant buffer.
Bug fix: In case a data transfer is in progress, 'scan_set=...' returns an
error
and does nothing else (because it might change the data-transfer parameters).
Bug fix: 'bank_set=...' no longer wastes time by causing an unnecessary second
call to CheckBanks() (and checkDisks() and readdir()).
Bug fix: A warning message from 'rtime?' is now only in case of a
significantly
slow disk.
Bug fix: 'reset=erase' and 'reset=erase_last_scan' now also reset the
reference
recording index used to determine the warning "Record pointer not
incrementing."
This prevents some spurious warning messages.
The 'replaced_blks?' query in version 2.6 of the writeup is now implemented.
It
works only when no data transfers (e.g., play or record) are in progress.
Bug fix (sort of): 'data_check?', 'track_check?', and 'scan_check?' now verify
also the two required zero bits in the byte after sync in the frame header.

2

Update Mark-5 Software.txt 10/16/2003

(This byte contains two BCD numbers in both Mark-4 and VLBA formats.) Although
counter-intuitive, this allows 'track_check?' to find frame headers,
previously
missed, in some partly flawed tracks with long strings of ones, which can be
caused by no input to the video converter or no video converter connected to
the
formatter for this track. This change is either good or bad depending on
whether
you want 'track_check?' to complain about such partly flawed tracks (the track
is written correctly; the data are flawed.)
Bug fix: Play_rate now correctly defaults to clock 9 MHz.
Bug fix: 'record=on', 'net2disk=...', and 'file2disk=...' now check for write
protect and, if so, then return an error and do nothing else. (Previous
versions
returned an error but then tried to write to disks anyway and became very
confused.)
Bug fix: 'scan_check?' with "skipped" unknown now returns 0 but with '?'s to
indicate this error (presumably a faulty scan).
Commands 'scan_set=...' and 'track_set=...' now have a 'dec' (for decrement)
argument (as well as an 'inc' for increment). Both wrap or unwrap as
appropriate. This is an extension of the specifications in writeup versions
2.5
and 2.6.
The maximum socbuf size was increased from 999424 to 3997696 bytes, where
socbuf
is the second undocumented additional parameter to 'in2net=...' and
'disk2net...'. An error is generated by any attempt to exceed this maximum.
(The
default socbuf size is unchanged at SOCBUF = 131072 bytes.) The larger size is
intended to help "tuning" eVLBI transfers.
2003 September 29, IMPORTANT: An error was found in the Mark5Update script.
The latest version, dated September 29, fixes a reboot problem. If you use the
old version of this script, then your Mark 5 will work until you need to
reboot,
then may fail because the Jungo driver may not be properly installed during
the
reboot. This seems to depend on which version of Linux you have. You may also
fix this by hand as follows: In the file /etc/rc.d/rc.local, change the line
/sbin/insmod windrvr6 to /home/streamstor/linux/driver/redist/wdreg windrvr6.
If
you execute this line by hand, then also execute the following line: chmod
0666
/dev/windrvr6.
2003 September 04 (day 247); IMPORTANT: Please read also the notes for the
August-29 release below. The current version of Mark5Update is September 09.
The
'DTS_id?' query with this version will return '2.5x' for command set revision,
that is version 2.5 with extensions (x). Except for 'play', 'scan_play', and
'replaced_blks' however, this version closely complies with version 2.6 of
"Mark
5A command set". It was tested with input design revision (IDR) 0xb8 and
output
design revision (ODR) 0x19 and should work with all previous IDRs and ODRs but
without certain features as noted below. The 'DTS_id?' query shows this
revision
information.
This release contains a new sspxf.bib file (September 04) from Conduant, which
fixes two problems: (1) Bank B now works with delayed play as used at
correlators, and (2) bank A's "Ready" light does not fib about being ready on
startup.
Bug fix: 'File2disk' now sets source file name default to "save.data".
Bug fix: In 'disk2net' and 'disk2file', if the starting and ending byte

3

Update Mark-5 Software.txt 10/16/2003

numbers
are not integer multiples of 8, then they are truncated down and handled
correctly.
The inline copy of the directory is no longer written, but we still try to
read
it (e.g., at a correlator) if the separate directory can't be read.
2003 August 29 (day 241); IMPORTANT: This version is in a renamed tar file,
namely Mark5A.tgz (rather than Mark5A.tar.gz), and a new version of
Mark5Update
(September 02 or 09) is needed to download and install it. Do not try to use
the
previous version of Mark5Update (June 02) with this tar file. This new
Mark5Update script (September 02 or 09) contains several necessary changes,
including editing /etc/rc.d/rc.local to accomodate the renamed Jungo driver,
that is windrvr6 instead of windrvr. This all happens automatically using this
new script.
This tar file contains a new release from Conduant, sslinux60Beta, dated
August
27. (But note that some older releases had the same name but now have "old"
suffixes.)
This version of the software agrees with version 2.5 of the writeup but with
extensions (2.5x) as noted below. It was tested with input design revision
(IDR)
0xb8 and output design revision (ODR) 0x19 and should work with all previous
IDRs and ODRs but without certain features as noted below. The 'DTS_id?' query
shows this revision information.
The stand-alone SSErase program with conditioning (-c 1) now prints the disk
statistics obtained during conditioning. This might allow identification of
faulty disks, but a suspicious disk should always be retested because disks
might have been improved by the conditioning process---that's the point of
doing
it. Conditioning is a process rather different from normal recording and
playing. To use the statistics after conditioning, try to compare one disk
with
another in the same pack or at least after the same conditioning process.
The SSErase program has also been modified to check for write protection
(which
applies only to a disk pack) and ask the user whether to remove the write
protection, as is necessary, of course, for erasure or conditioning.
Note that SSErase does not have a reset at the end as, for example, Mark5A
does.
This allows erasing multiple disk packs sequentially without waiting for the
normal resetting and checking processes that accompany XLROpen. The stand-
alone
program SSReset performs the reset that is missing from SSErase and so causes
resetting and checking at the next startup of Mark5A or any other SS-aware
program.
An optional experiment name and source name (or source name and experiment
name)
have been added as two additional parameters on 'record=on...' (no embedded
spaces). (This is labeled as "NYI" in version 2.5 of the writeup.) DirList,
'scan_set?', and 'scan_check?' now show these added parameters separated by
spaces from the scan name. DirList was modified to leave room to print the
added
parameters.
The 'scan_set=...' command can now use abbreviated scan names. If its first
parameter is all numeric, then 'scan_set' will first try to interpret this
parameter as a scan number. Failing that (e.g., not that many scans), then
'scan_set' will find the first scan whose scan name, experiment name, or
source
name contains the string in this first parameter. (Like almost everything else
in Mark5A, this search is case insensitive.) This is an extension of the

4

Update Mark-5 Software.txt 10/16/2003

specifications in writeup version 2.5.
The start byte number that is set and reported by 'scan_set' was augmented as
follows: It defaults to the start of the scan or can be set by 's', 's+', 'c',
or 'e' as before. Or it can be set, instead, by an offset byte number,
preceded
by '+' (no space), to be added to the start of the scan, or preceded by '-'
(no
space), to be subtracted from the end of the scan to give the start byte
number.
Or it can be set by a time in standard notation (no embedded spaces):
'nnndnnhnnmnns'. Any of these time units can be omitted, and any omitted
parameters to the right of any prescribed parameters are taken to be zero. As
an
example, '5h' is the same as '5h0m0s'. Any omitted parameters to the left of
any
prescribed parameters mean to ignore the corresponding time units in the data.
Mark5A will then, if possible, set the start byte number to the first
occurence
of this time within the prescribed scan. (But note that '2m', which means
'2m0s', will not start at 4m, 6m, and so forth.) Alternatively, a '+'
preceding
such a time (no space) tells Mark5A, instead, to just add this time onto the
start of the scan to give the start byte number. The play pointer also is set
to
this same start byte number by the scan_set command, but the play pointer can
be
changed by the play command, and it increases while playing. These are changes
in the specifications from writeup version 2.5.
There is now also an additional parameter on 'scan_set', the end byte number,
which defaults to the end of the prescribed scan. Or the end byte number can
be
set by an offset byte number, preceded by '+' (no space), to be added to the
start byte number (determined as above---not necessarily the start of the
scan),
or preceded by '-' (no space) to be subtracted from the end of the scan. As
another alternative, the end byte number can be offset from the start byte
number by a time parameter in the same time format as above. And if a '+' (no
space) preceds this time parameter, then the time offset is added to the start
byte number determined as above. If a '-' (no space) preceds this time
parameter, then the time offset is subtracted from the end of the scan. These
are changes in the specifications from writeup version 2.5.
These starting and ending byte numbers as set and reported by 'scan_set' are
now
used in scan_play. This is a change in the specifications from writeup version
2.5.
In 'disk2net' and 'disk2file', the defaults for the start byte and end byte
numbers are now the start and end byte numbers as set and reported by
'scan_set'. And, in 'disk2file', the destination file name defaults to the
name
of this scan (in the current directory). These defaults can, of course, be
overwritten by explicit parameters. These are changes in the specifications
from
writeup version 2.5 and also changes from the previous update (below).
Bug fixes: 'File2net' and 'file2disk=...' now correctly translate 0 for the
length of a file into the actual length even for files over 3 Gbyte, and they
also correctly deal with non-zero file starting bytes.
Bug fix: In 'file2disk', the default scan name is the file name without the
path.
The 'bank_set=...' command was rewritten. If the bank that you ask for is not
the bank already selected, then this command returns a code of 1 meaning
delayed
completion. Bank changing takes a variable amount of time up to almost 3

5

Update Mark-5 Software.txt 10/16/2003

seconds. While bank changing is in progress, many commands and queries return
a
code of 5 meaning busy---try again later---or 6 meaning conflicting request.
(In
effect, neither bank is mounted during this transition.) If an attempt to
change
the bank fails (e.g., if there is no ready disk pack in the other bank), then
a
'status?' or 'error?' query will show error 1006, "Bank change failed." And a
'bank_set?' query will show whether the bank has changed. Changing banks can
also generate other errors if there are problems with the new bank.
Bug fix: A signal handler for SIGPIPE now handles a broken pipe (e.g., talking
to the Field System) to keep Mark5A alive. This generates error 1005, "Broken
pipe".
Bug fix: Now 'disk2file?' query works again.
Bug fix: Now 'disk2net?' query does "waiting" correctly.
Bug fix: Debuggery was added for pthread_create() failure, and
pthread_detach()
is now used to avoid leaking thread resources. This bug fix is needed at
correlators that use delayed play (i.e., all Haystack-designed correlators).
Bug fix: 'Disk_serial', 'disk_model', and 'disk_size' now work without
generating error messages even during recording or playing.
Bug fix: 'VSN?' query now correctly checks disk serial numbers against its
stored serial numbers and reports any errors (except that these can't be
checked
after an SSErase). There is also added information in case of a mismatch.
Bug fix: Reset=erase now uses XLRErase() (instead of XLRRecord() and
XLRStop())
and also clears the user-directory area, which clears the remembered serial
numbers. (There is no effect on VSN.) This fix is intended to eliminate the
problem of remembered old data that were recorded with previous SS versions.
Bug fix: In case of a bad or missing disk, the check-directory flag is turned
back on when bank or disks are changed.
Bug fix: On 'play=off:', the play pointer is set to this even if playing ended
at a different byte number. And 'play=off' without a updates the play pointer
only if playing was in progress and this command stopped it.
The 'rtime?' query was modified to calculate a better approximation to the
remaining time and capacity using the effectively reduced capacity of the disk
set in case one or more of the disks is slow enough to impair performance. At
this release, however, this better approximation does not work during
recording:
Expect more accurate numbers from 'rtime?' only when idle, and expect less
accurate numbers during recording. Note also that this situation---one or more
slow or faulty disks---also increases the rate at which the remaining disk
space
is used up and reduces the maximum data rate that the disk set can accept.
(The
'dir_info?' query was not changed.)
The stand-alone DirList program was modified to accept an alternative input
file
name. With no command-line arguments, DirList reads and lists /var/dir/Mark5A
as
before. There are now two setable parameters: -m sets the debug message level,
msglev (range -1 to 3, default 1), and -f sets the file name, default
/var/dir/Mark5A. This allows reading a copy of the directory file as sent,
perhaps by email, from stations.
The delayed-play scheme used at Haystack-designed correlators was changed to
use
the new "play-arm" option from Conduant. The SS buffer is set to start filling
a
few seconds in advance of the desired start ROT; then a play trigger starts
actual playing with only sub-millisecond delays. This is intended to almost

6

Update Mark-5 Software.txt 10/16/2003

eliminate the need for skips.
The 'get_stats' function now also shows a count of the number of SS blocks
that
were replaced with fill pattern during the previous playing. This count, for
each disk, appears as the last number on the printed line. Anything other than
0
for this count indicates a problem with this disk. This is an extension of the
specifications in writeup version 2.5.
The 'in2net' function has given us a lot of trouble and was rewritten. Among
several changes, clocking in the input board is now turned off and on by
in2net
using "notclock" to define the start (on) and end (off) of each scan. Version
2.5 of the writeup is still correct except that the "#bytes sent" as returned
by
the 'in2net?' query is now the number of bytes received (including the bytes
in
the FIFO waiting to be sent) since 'in2net=connect'. And the 'in2net?' query
has
an added int parameter, the number of bytes in the FIFO waiting to be sent.
After 'in2net=off', you should wait for this last parameter to drain to 0
before
'in2net=disconnect' to avoid losing data.
After 'in2net=off' but before 'in2net=disconnect', "#bytes received" (formerly
"#bytes sent") can be logged as an index into the received file or scan at the
target computer. This is a good approximation even if the "#bytes remaining in
buffer" is not 0 and becomes exact when this number drains to 0. This is an
extension of the specifications in writeup version 2.5.
Proper operation of the 'in2net=off' feature requires version 0xb7 or later of
the "Input design revision" (IDR, which is the next-to-last parameter returned
by the 'DTS_id?' query). Otherwise you'll need to turn off the formatter clock
between scans to stop data flow to the I/O board. (The FS can do this.)
Bug NOT yet fixed: 'in2net' wants a scratch disk pack in bank A even though it
doesn't need or use it.
2003 June 12 (day 163); This version agrees with writeup version 2.5 but
with
extensions (2.5x) as noted below. It was tested with input design revision
(IDR)
0xb8 and output design revision (ODR) 0x19 and should work with all previous
IDRs and ODRs but without certain features as noted below. The query 'DTS_id?'
shows this revision information.
The 'dir_info?' query can now be used during record, play, and other data
transfers.
The stand-alone SSErase program was augmented to do disk conditioning. With no
command-line arguments, SSErase does a simple erase as before. There are now
two
setable parameters: -m sets the msglev (range -1 to 3, default 1), and -c sets
conditioning (0 for FALSE, 1 TRUE, default FALSE). So, for example:
SSErase -m 0 -c 1 &

goes through the long conditioning process on whatever disks it can access, up
to 16 at a time in both banks. With msglev set to 0, debug prints about every
minute to show what's happening.
Conditioning disks is recommended before recording especially if they are to
be
recorded at or near their maximum data rate. Conditioning amounts to a
write-read-write cycle through the whole set of disks, but here it is done in
two rather than three passes. Printed with debuggery and counting down twice
is
the number of bytes per bus. With an 8-disk pack, for example, this count
starts
at a quarter of the total capacity, which is twice the capacity of a single
disk. Conditioning one 120-Gbyte disk takes about 101 minutes; two 120-Gbyte
disks (as two masters), 103 minutes; four 120-Gbyte disks (as four masters),

7

Update Mark-5 Software.txt 10/16/2003

111
minutes; eight 120-Gbyte disks (an eight pack), 157 minutes; and sixteen
120-Gbyte disks (two eight packs), 278 minutes. 200-Gbyte disks take about
5/3rds as long---no surprise. Conditioning one 200-Gbyte disk takes about 160
minutes; eight 200-Gbyte disks, 286 minutes; and sixteen 200-Gbyte disks, 465
minutes. These times are approximate for the ideal case, but, if any of the
disks has a problem, times can be much longer. After conditioning two disk
packs
at a time (e.g., more than eight disks), or in any case where you change the
disks into a different configuration, then you'll also need to erase each disk
pack separately before recording.
When the recording speed (e.g., formatter clock) and mode are such that the
disks can't keep up, either because of an improper setup or a faulty disk or
disks, then the recording will be "throttled" (some data are lost), and a flag
indicating this throttling (called a suspend flag because recording is
momentarily suspended) is now available to Mark5A. This flag causes error
1003,
"Recording throttled (can't keep up)" and, on 'status?', bit 0x400 set. In
marginal conditions, this flag may flicker on and off, and this error, as with
most errors, may be remembered after the error condition is fixed. Clear the
error with 'status?' or 'error?'. This feature requires version 0x19 or later
of
the "Output design revision" (ODR, which is the last parameter returned by
'DTS_id?'). The added status bit 0x400 is an extension of the specifications
in
writeup version 2.5.
Bug fix: With ODR 0x19 and later, a 'mode?' query reports the correct output
mode and output submode.
In disk2net and disk2file, if the end byte number is preceded by a + (no
space),
then this number will be interpreted, instead, as the byte length of the
transfer. This is equivalent to saying that this number will then be added to
the start byte number to give the effective end byte number. This is an
extension of the specifications in writeup version 2.5.
In disk2file, if the destination filename (minus path) matches an existing
scan
name, then the start and end byte numbers default to the start and end of this
scan. These defaults can, of course, be overwritten by explicit numbers. This
is
an extension of the specifications in writeup version 2.5. We recommend that
you
do not use this feature because it will be changed in the next release.
2003 June 4 (day 155); This tar file contains a new partial release from
Conduant (May 28), which fixes some problems with playing or reading with
missing or failing disks. See notes below on fill pattern.
The VSN command was augmented to record the list of serial numbers when the
VSN
command is issued and also at recording. The VSN query was augmented to cross
check this list of serial numbers against the disks actually present and
return
an error, "Disk serial-number mismatch," if they differ.
Bug fix: A 'status?' query now distinguishes between net2disk and net2out.
Bug fix: 'get_stats?' doesn't generate spurious XLR errors on missing slave
disks but does report disk number.
Bug fix: 'reset=abort' now actually works as advertised.
2003 May 24 (day 144); An interim update from Conduant (May 23) is in this
tar file. This fixes a bug in recording on bank B that affected the directory
on
bank A.
To deal with a missing or faulty disk in a disk pack, this version sets a
Conduant option that allows reading and playing in spite of this problem. Fill
pattern replaces the missing data. (See notes on fill pattern below.) This

8

Update Mark-5 Software.txt 10/16/2003

might
allow correlators to salvage some of the data from such a faulty disk pack.
Data_check, track_check, and scan_check were modified to deal with certain
kinds
of disk-reading errors. If at least one valid frame header can be found (but
not
all five), then these queries report all the known information but without the
track-frame period in time or in bytes. These two parameters are replaced by
'?'s to indicate unknown and probably an error. This should allow correlators
to
try to use such flawed data.
Bug (re)fix: net2disk and net2out do not generate incorrect error 1001 after
the
other machine has disconnected.
2003 May 20 (day 140); This is a very minor update to fix an error in the
makefile for the Jungo driver (in $SS/driver).
The 'position?' query was improved: It can now be used during playing, and its
play pointer gives an (approximate) answer during playing in progress.
Also during playing, polling now sets an error (1002) in case the play pointer
is not incrementing. This is not the same as playing halted (end of scan or
end
of data), which is not considered to be an error. Check for either case with a
'status?' query.
2003 May 16 (day 136); This tar file contains a new release from Conduant,
6.0beta, dated May 15, which adds some new features and fixes some errors as
noted below.
Some of the following changes were made to be in accord with Revision 2.5 of
the
writeup.
Bank mode is always on, and the 'bank_mode' command and query and the
'reset=dismount' and 'reset=mount' commands are no longer supported (except in
the old Anova chassis).
ROT rate read from ROT broadcasts is now used (instead of a fixed 32e6) to
allow
for speed_up. (This applies to correlators only and to delayed play only.)
Play_rate is not affected.
Bug fix: net2disk and file2disk do not generate incorrect error 1001.
Bug fix: we think that EndM5 now works on all versions of Linux.
Bug fix: disk2file now correctly does default file name.
Bug fix: reset=erase now properly clears the directories (but also leaves a
copy
of the (empty) directory in line on disk, so the first scan starts at byte
81952.)
Bug fix: record=off at end of medium (full disks) now works properly.
Bug fix: the fourth argument of mode=... now correctly defaults.
Most errors are now remembered (even if printed with debuggery) and printed
(and
cleared) by either a 'status?' or an 'error?' query. Thus errors may be
remembered even after they have been corrected. (This may be regarded as
either
an improvement or a bug fix.)
Following Linux tradition, the Mark5A command line now has a help option, -h,
which lists the various startup parameters.
The 'protect' command and query (write protection) now work except that the
'protect?' query does not work in non-bank mode (Anova chassis), and
protection
in non-bank mode has not been tested.
The 'play=on' command and several other commands now check more carefully for
other data transfers in progress and return errors if so.
The extra debuggery from a 'bank_mode?' query was moved to 'bank_set?'
(because
bank_mode command and query are no longer supported).

9

Update Mark-5 Software.txt 10/16/2003

We have augmented the 'status?' query as follows:
bit 12 disk2file 0x00001000
bit 13 file2disk 0x00002000
bit 14 disk2net 0x00004000
bit 15 net2disk 0x00008000
bit 16 in2net 0x00010000
bit 17 net2out 0x00020000
(Some of these are still partly ambiguous in this version.) When one of these
bits is set, the corresponding command is active (transferring data) or
waiting
to become active. In this case, other data-transfer commands will return
errors.

We have further augmented the 'status?' query as follows:
bit 20 0x00100000 Bank A selected
bit 21 0x00200000 Bank A ready
bit 22 0x00400000 Bank A full
bit 23 0x00800000 Bank A write protected
bit 24 0x01000000 Bank B selected
bit 25 0x02000000 Bank B ready
bit 26 0x04000000 Bank B full
bit 27 0x08000000 Bank B write protected
These add, of course, so a typical response might be:
!status? 0 : 0x02300001 ;

which means that bank A is selected and ready and bank B is ready. This
bank-status augmentation of 'status?' works only when data transfers (e.g.,
recording and playing) are not in progress.
Also 'status?' bit 0x000008, delayed completion, is now set whenever any
data-transfer activity, such as recording, playing, or transfers to or from
disk
or net, is active or waiting.
The 'rtime?' query now also returns the percentage remaining unrecorded disk
space as its third parameter.
A new reset command, 'reset=abort', aborts data transfers disk2net, disk2file,
and file2disk. (We may expanded this list in the future to abort other
operations also.) This command returns immediately, but there may be a delay
of
up to two seconds before the data transfer stops. During this delay, 'status?'
queries will show what's happening.
This version of Mark5A was upgraded to set and use the fill-pattern detection
in
the output section of the I/O board. On playing, fill pattern inserted by the
SS
card in lieu of unreadable data is converted to an equally long wrong-parity
time sequence, which should enable the correlator to maintain synchronization
through this unreadable-data segment. This requires version 0x18 or later of
the
"Output design revision" (ODR, which is the last parameter returned by
'DTS_id?').
A number of small changes in this version make it work better with the old
Anova
chassis (in non-bank mode, of course). These changes were only partly
successful; this version in an Anova chassis generates some spurious error
messages. Even though most things work, this is likely to be annoying.
2003 April 10 (day 100); The tar file with this date, Mark5A.100.tar.gz,
remains available on web for downgrading.
Important: This version of Mark5A implements bank mode and contains other
major
changes. This version of Mark5A can read and play SS disks recorded with older
versions, however, older versions of Mark5A can not read or play SS disks
recorded with this version. Thus correlators should be upgraded to this
version

10

Update Mark-5 Software.txt 10/16/2003

before attempting to read or play SS disks recorded with this version.
This version works with the older Anova chassis, but, of course, without bank
mode.
Important: This version has an upgrade from Conduant, sslinux452beta.tgz,
which
contains an updated Jungo driver; see notes above. The sspxf.bib file in
$SS/bib
and the library in $SS/lib are also special later updates.
Important: The command-line options for Mark5A have been changed to be in
accord
with Linux conventions. There are three setable parameters: -m sets the msglev
(range -1 to 3, default 1), -f sets formal parsing (0 for FALSE, 1 for TRUE,
default TRUE), and -s sets the maximum number of simultaneous control socket
connections (range 1 to 7, default 7). At field stations with old versions of
the Field System, try:
Mark5A -m 0 -f 0 &

to give debug printing and informal parsing. At Haystack-designed correlators,
try:
Mark5A -m 0 &

to give debug printing (and formal parsing). Note that parts of page 5 of
Mark5A
Software are thus out of date.
Many of the following changes were made to be in accord with Revision 2.4 of
the
writeup.
Track_check now has track data rate (as in scan_check and data_check) and
decoded track number converted to 2--33 or 102--133 notation and followed by a
'D' to indicate a duplicated track (i.e., the track you asked for is correctly
a
duplicate of this track in this mode), or '?' to indicate an error (i.e., the
wrong track was found). The '-' in place of missing bytes was deleted.
DTS_id now also shows the command-set revision and the input- and output-
design
revisions from the I/O board. The input- and output-design revisions will both
be 0 in case there is no I/O board (i.e., Mark5P).
DTS-id now reads a file /etc/hardware_id for the serial number and uses the
system name only if this file is not readable or not the correct length.
Bug fix: Corrected error checking in mode command.
Bug fix: Rtime now reloads the record pointer before calculating. This allows
rtime to give an (approximate) answer during recording in progress.
This new Conduant version contains working bank-mode functions, and the
bank_select and bank_mode commands and queries have been rewritten to
correspond. Also status polling now checks periodically on which bank is
selected. This allows the operator to switch banks using just the key switches
and disk insertions. (But automatic bank switching during record or play is
not
yet implemented.)
This version from Conduant also contains label commands, which were used to
implement VSN. (But the VSN serial-number cross-checking is not yet
implemented.) To support VSN, tstMark5A now accepts key words as short as 3
chars.
Bank_mode accepts just one parameter, which now defaults to "on", and
bank_mode
is "on" at startup if in a TK200 chassis. Bank mode can't work in the old
Anova
chassis.
Bug fix: Bank_set now re-reads status and disk information whenever the bank
changes.
Previous errors newly reinserted in informal-parsing mode: '=' in response to
disc_check and disc_serial queries.
Bug fix: Dplay() (delayed play, correlator only) now writes an error message
and

11

Update Mark-5 Software.txt 10/16/2003

starts playing immediately if the requested start ROT is in the past or less
than 0.1 second in the future.
Reset has another option for its parameter: "erase_last_scan".
Bug fix: Reset=... tries to re-read device status only if disks are mounted.
Reset=dismount is illegal in bank mode.
Bug fix: Bank_mode=on now redoes the initialization.
Bank_set has another option for its parameter: "inc" changes to the other
bank.
Scan_check, data_check, and track_check now calculate the frame period in
bytes
using an algorithm that is more likely to show any errors. Scan_check, in
particular, is now more persnickety. The point is, after all, to show up
errors
and problems.
Scan_set now also accepts "s+" as its second argument to set the play pointer
to
65536 bytes past the start of the scan.
Various improvements were made in in2net, which should work now and should
report overflow (i.e., can't keep up) to either an in2net or status query.
Bug fix: The status query now works properly during recording or playing.
During recording, polling now sets an error (1001) in case the record pointer
is
not incrementing. This is not the same as recording halted for end of medium,
which is not considered to be an error. Check for either case with a 'status?'
query.
Various minor improvements were made especially in error messages and in minor
housekeeping tasks associated with bank switching.
2003 March 5; Conduant has fixed a bug in their on-board software dealing
with LBL for disks greater than 137 Gbytes. If you are using 200-Gbyte SS
disks
in a Mark 5, then you should upgrade from the February-20 version of Mark5A.
The
upgrade is in this sspxf.bib file. After upgrading to the February-20 tar
file,
then put this sspxf.bib file into $SS/bib overwriting the older file with the
same name. Then SSReset and restart Mark5A. (Do not apply this sspxf.bib
upgrade
to later versions.)
2003 February 20; This version will show "2003y044d14h" in the response to
"DTS_id?" (because the latest Mark-5 update therein is February 13, but the
latest Conduant update and the date of the tar file is February 20). The tar
file with this date, Mark5A.pre.tar.gz, remains available on web for
downgrading.
This tar file includes a new sspxf.bib file from Conduant, which should make
the
in2net command work again. This same bib file also contains a work around for
the bug in LBA in Western Digital disk drives with "JB" in the model number.
Bug Fix: The mode command now generates an error return on an attempt to go
into
64-track mode when the resulting play_rate clockgen would be above 45.36 MHz.
The play_rate command also checks this. The actual limit is for the track data
rate not to exceed 40 MHz for up through 32 tracks or 20 MHz for 64 tracks.
Many of the following changes were made to be in accord with Revision 2.3 of
the
writeup.
On record=off, the scan number is now set to the just-recorded scan, and the
play pointer is set to the beginning of this scan.
Dir_info is a query only and no longer changes the scan number.
The scan_dir query is no longer supported, and, instead, the scan's starting
and
ending byte numbers were added onto the return from the scan_set query in
place

12

Update Mark-5 Software.txt 10/16/2003

of the number of scans. (The number of scans is available from dir_info.)
A scan_check query no longer increments the scan pointer.
Name changes for this new writeup: Changed track_select to track_set and
changed
bank_select to bank_set. (But the old names also still work.)
Other changes: One of the errors previously fixed was put back in order to
work
with the old version of the Field System, namely an '=' after the '?' in the
return from the position query. This incorrect '=' occurs only in INformal
parsing mode (described below), which is necessary for this version of the
Field
System.
The scan_set command now allows "inc" as its first argument, which increments
the scan number or, after the last scan, loops back to the first.
The track_select command now allows "inc" in place of either or both of the
track numbers to mean increment to the next higher-numbered track or loop back
to 2 at the end of the list.
The second argument of scan_set now defaults to "S", so the play pointer is
always set by this command (by default to the start of the scan).
Bug fix: Scan_play is now more nearly correct, and play handles end-of-medium
in
a consistent way. Playing stops at the end of the scan (scan_play) or
end-of-medium (either play or scan_play) and updates the play pointer, but the
corresponding queries then return "halted" to show what happened.
Bug fixes: More incorrect "=" deleted from query replies.
Note that many of the comments below for the previous release apply also to
this
one.
2003 January 28; Scan_play now is also a query.
Disk_serial, disk_model, and disk_size are now faster; they each should now
come
in under the one-second limit even with 16 disks. (The delay was moved to the
reset=mount sequence, which now also has more debuggery.)
Data_check, track_check, and scan_check in case SS or TVG now return three
additional numbers in order: starting and ending word numbers (32 bits each)
where the pattern was found, and the length of the buffer. In the ideal case,
the first number would be 0, and the last two numbers would be equal.
Bug fix: Device info is needed on reset=mount.
Note that many of the comments below for the previous release apply also to
this
one.
2003 January 24; Dozens of small changes were made for this update. Most
were
made to be compatible with Revision 2.2 of the writeup. Note particularly that
the arguments of the mode command and query were revised, and the returns from
data_check, track_check, and scan_check were correspondingly revised. Verify
that you have a compatible suman to use this version at a Haystack-designed
correlator. A tar file with the previous version (Mark5A.old.tar.gz, 2002
December 27) remains available on web.
Mark5A now has formal and informal parsing modes. In formal parsing mode, most
of the '=' and ':' prescribed in the writeup are required. This allows, for
example, the sequence ": :" to mean to take the default or the previous value
(depending on the specs for the command) for the missing parameter that would
be
between the two ':'s. In informal parsing mode (the only parsing mode in
previous versions of Mark5A), many of these parsing rules are relaxed. In
particular, just a space can be used in place of "=" and ':'. A '-' can now be
used as a placeholder in informal parsing mode. Also a successful record=on
returns 1 (delayed completion) in formal parsing mode but returns 0 in
informal
parsing mode.
Informal parsing mode might be helpful when you are typing commands and

13

Update Mark-5 Software.txt 10/16/2003

queries
by hand. At the field stations, you might have to use informal parsing mode:
Check your version of the Field System to determine which is wanted.
Haystack-designed correlator software expects Mark5A to be in formal parsing
mode.
This version of Mark5A normally comes up in formal parsing mode. To select
informal parsing mode, add a second parameter of 0 on the command line. For
example:
Mark5A 0 0 &

where the first 0 selects debuggery, and the second 0 selects formal parsing
mode off, that is informal parsing mode.
This version of Mark5A allows functions that don't need to talk with the SS
board to work even when disks are dismounted or are being mounted or
dismounted.
This allows, for example, configuration and interrogation of the I/O board
while
disks are being changed.
There is a new query, rtime, for recording time remaining to end of medium,
and
the corresponding parameter was deleted from dir_info.
Bank_mode and bank_select are present but not yet functional (NYI).
Data_check returns blank as its last parameter in case skipped cannot be
determined, and this is probably not an error. But scan_check returns '?' in
the
same situation because this probably is an error. We now try to use '?' and
blank consistently in this way.
This tar file contains a slightly revised SDK version (sslinux541.tgz, January
16) from Conduant but with the same Jungo driver.
Bug fixes: Many changes were made to the handling of play_rate for various
modes
to make these consistent. These changes are intended to be helpful, but, if in
doubt, set play_rate after changing modes.
Bug fix: Ignore formatter serial number in VLBA mode.
Bug fix: Delete '=' sign in the return from various queries.
Bug fix: The spurious error message during reset=mount was programmed around
(we
still don't know where it's coming from).
Bug fix: Mark5A now does a CardReset before an error halt.
2002 December 27; This version incorporates almost all the updates and
changes in Revision 2.1 of the writeup.
Bug fix: Data_check, track_check, and scan_check now do not back over the
start
of the buffer and now correctly skip a tape-frame header that is truncated by
the prescribed starting byte number.
Bug fix: A copy of the directory is written to file /var/dir/Mark5A (for
DirList
to read) at record=off even if the SS disks are full (end of medium).
2002 December 18; This release back tracks on a recent change that is
incompatible with current versions of the Field System, namely the return code
from record=on. This was changed back to 0 pending a release of the FS that
understands return code 1 for this case.
Bug fix: Input_mode (obsolescent) now handles an odd-numbered formatter error
correctly.
2002 December 16; Bug fix: A floating-point round-off error in scan_check,
data_check, and track_check was fixed by forcing the time offsets between
nearby
tape frames to be exact integer multiples of 1.25 milliseconds and the time
offsets between distant tape frames to be exact integer multiples of this
(previously determined) tape-frame spacing. (The infamous quarter-millisecond
offset was already being corrected.)
Bug fix: At play=off after scan_play, PlaybackLength is set back to 0 to avoid
affecting a subsequent play=on;

14

Update Mark-5 Software.txt 10/16/2003

If a reset=mount or reset=dismount fails, it can now be retried. This allows
recovery from certain disk-mounting errors without exiting Mark5A.
Bug fix: An extra record=off when not recording no longer gives a bogus scan
containing only a copy of the directory.
2002 December 9; Mark5A functions disc2file and file2disc were updated to
Large File Support (LFS), which allows reading and writing files larger than 3
Gbytes. A minor error in file2disc was also corrected.
Mark5A on startup with msglev 0 now contains a desperation attempt to read the
directory. Try this if you're sure that your disk(s) have a directory but
Mark5A
can't otherwise read it.
This tar file also contains some minor upgrades from Conduant, namely sstest,
ssopen, and sspxf.bib. The sstest and ssopen upgrades affect only users with
eight-pack modules using both together. The sspxf.bib upgrade fixes the return
to bypass after either recording or playing. At the field stations, if your
decoder fails between scans (i.e., when you're not recording), then you need
this upgrade.
The return codes have been updated to agree with the latest draft revision of
"VLBI Standard Software Interface Specification---VSI-S" (see VSI-S). Most
notably, code 3, formerly "syntax or parameter error," was split into code 3,
"syntax error," and code 8, "parameter error." Code 7 now means "no such
keyword," for example, mispeld. And code 1, delayed completion, is now used in
all appropriate cases including record and play. This might require changes in
cooperating software such as the Field System.
2002 December 4; This tar file contains a slightly revised SDK version
(sslinux54.tgz) from Conduant but with the same Jungo driver.
The stand-alone programs Net2file and File2net now support files larger than 2
Gbytes using Large File Support (LFS) under Linux, HP-UX, and perhaps other
operating systems. With blocks of data larger than 2 Gbytes, use Net2file with
the Mark5A command disc2net to transfer data from SS disks to ordinary files,
and use the Mark5A command net2disc with File2net to transfer data from
ordinary
files to SS disks. Use these schemes even on the same machine (localhost)
because the Mark5A commands disc2file and file2disc do not (yet) support large
files (LFS).
Beware: There are some bugs in manipulating files larger than 2 Gbytes. Under
Linux, for example, using '*' and '?' for file-name expansion fails under csh
and tcsh but works under sh and bash.
Track numbers for the 8- and 16-track cases were revised yet again. The
track_check command now returns "-" as its last argument (in place of skipped)
if the track number read from the tape-frame header does not agree with the
number in track_select. (And this generates a Mark5A warning message if
debuggery is on.) Tracks with data that are duplicated (fanned out) on play
according to Mark 5A Track Mapping, tables 1 and 2, are now also checked by
track_check, but, if you track_select a duplicated track, then "-" instead of
skipped will show that the track number in the tape-frame header is not the
same
as the track number that you requested.
For VLBA mode, track numbers are checked against table 18, page 24 in Mark
IIIA/IV/VLBA Tape Formats, Recording Modes and Compatibility. If incorrect,
the
warning message will show the expected and found VLBA track numbers from this
table.
2002 November 27; Commands to the I/O board are now sent only when the
corresponding parameters have changed. This allows, in particular, changing
track_select during play without losing sync. Scan_play is partly functional:
It
starts playing at the start of the scan, plays to the end, and stops. But it
does not go into bypass mode at the end of playing, and it does not update the
play pointer, unless or until a play=off. Readback of VLBA mode in the mode
query was fixed. Scan_set will now accept either b (for beginning) or s
(start)

15

Update Mark-5 Software.txt 10/16/2003

for the starting byte position of a scan. The test program, tstMark5A, now
uses
readline() instead of fgets() to read what you type. This allows line editing
and history recalls of previous commands and queries. See the man or info
pages
on readline. But this readline() version of tstMark5A.c no longer compiles on
HP-UX and other platforms, alas. The April-30 version, which works on HP-UX,
is
available as tstMark5A.c.bak alongside the tar file. Don't forget to re-
install
the Jungo driver if you're upgrading from a much older version.
2002 November 25; This tarball contains yet another new release from
Conduant
with yet another new driver from Jungo. Important: A Jungo driver
re-installation is required after installing this tarball. Other changes
include: Revision and SMART information were added to the debuggery that
prints
during initialization. A check for odd-numbered formatter serial numbers was
added, and mode=... returns an error if an attempt is made to configure an
odd-numbered formatter for a parity-striped mode. The track numbers in 8- and
16-track modes were changed again. Scan-set returns an error if it can't
interpret its second argument. Data_check, scan_check, and track_check now all
work correctly in 64-track mode provided that the paired tracks (i.e., the
tracks with 100 added to or subtracted from the track numbers) are configured
and have valid sync. If an incorrect track number is found by track_check and
debuggery is on, then a warning message is printed. There are also several
minor
bug fixes.
2002 November 18; Important: The check for even-numbered formatter serial
numbers (noted below) was removed from this tarball because some in-use
formatters (notably at Westford) still have odd-numbered serial numbers. Most
of
the changes in Revision 1.9 of the writeup have been made in this tarball, but
some of the obsolete commands and queries, such as input_mode and play_mode,
have also been retained. There are several minor bug fixes.
2002 November 15; Bug fixes: data_check, track_check, and scan_check should
now work correctly with any even-numbered formatter. Clock frequency should
now
be correct for 64-track mode. A messy business with a play=off (from suman on
the correlator) interfering with a reset=dismount or reset=mount seems to have
been fixed. Also some, but not all, of the changes in Revision 1.9 of the
writeup have been incorporated.
2002 November 14; Bug fix: The track_check query was flawed in the previous
version. The interactions between the results returned by data_check,
track_check, and scan_check and the commands to the I/O board (input_mode and
play_mode) have been removed. This update does not yet incorporate the changes
in Revision 1.9 of the writeup.
2002 November 12; This tarball contains many updates summarized as follows:
Conduant has now incorporated the new Jungo driver with scatter/gather. This
improves the speed of eVLBI operations. A Jungo driver re-installation is
required after installing this tarball. To be compatible with this new Jungo
driver, mmap(), as used to write the directory file, was replaced by ordinary
write()s. The directory reading at startup is now more robust. The play_rate
query now returns two frequencies, the effective rate as specified, and a new
third (last) parameter: the actual rate including parity bits (*9/8) and, with
VLBA format, also the header bits (*126/125). (Is this correct for the VLBA
correlator?) The dir_info query now returns the estimated recording time
remaining (in seconds) as its fifth (last) parameter. This parameter is
accurate
provided that the input_mode, play_mode, and play_rate parameters are
correctly
set. The track numbers are now correct for the 16- and 8-track cases. The

16

Update Mark-5 Software.txt 10/16/2003

efficiency of scan_check, data_check, and track_check was improved. A test
that
the bit preceding sync must be 0 was added to reduce false sync detections.
(The
new I/O board also needs this.) Another stand-alone program, DirList, for
directory listing, was added to this tarball; see the writeup on page 7 of
Mark5A Software.
2002 October 10; This tarball contains many upgrades summarized as follows:
Mark5A now talks with the new (under development) combined I/O board. On
machines with the old separate input and output boards, Mark5A detects this
and
falls back to the old stub behavior. Many small changes are associated with
these new capabilities. The new outBoard() and inBoard() are in a separate
file,
IOBoard.c. Other fixes include: Revised wait-for-start-play (used at the
Haystack correlator) and improved interrupt of this wait on abort. TVG clock
was
deleted from input_mode (there is no such clock). Mark5A now checks for and
rejects negative play pointer. The status query now works almost always.
Get_stats query now increments the drive number even if error or no such
drive.
Day number in data_check, track_check, and scan_check was corrected (+1) in
case
VLBA format. But this release does NOT contain the new faster Jungo driver.
2002 September 23; Fixed track_select to accept and reject the correct
track
number ranges (accept 2 to 33 and 102 to 133).
2002 September 23; Several minor fixes, which should avoid "Segmentation
violation" on scan_check, data_check, or track_check.
2002 September 19; Fixed status query so that it is mostly correct even
when
recording or playing.
2002 September 18; Fixed the spurious WARNING message on startup in case no
slave drives.
2002 September 18; Added an unauthorized additional parameter to set_scan
or
scan_set: "start" or "s" sets the play pointer to the start of the scan, "c"
or
"center" sets the play pointer to the center of the scan, and "e" or "end"
sets
the play pointer to 1000000 bytes before the end of the scan, which allows
data_check or track_check to start there.
2002 September 18; Increased read-buffer size to accomodate 64-track mode
(in
data_check, track_check, and scan_check). This takes some extra milliseconds
in
case a check fails.
2002 September 17; Scan_play partly works---it starts playing the proper
scan
but doesn't stop at the end of the scan. Use play=off to stop.
2002 September 16; Scan_check now increments the scan counter even if it
can't decode VLBI data (but not on errors).
2002 September 16; Set_scan or scan_set does NOT update play pointer to
that
scan. (Reverse change below.)
2002 September 16; Record query now returns "halted" in lieu of "off" if
end
of medium. (Play query already had a "halted" if end of recording.)
2002 September 16; Record query now returns scan number and scan name.
2002 September 16; Set_scan or scan_set command now updates play pointer to
that scan.
2002 September 16; Fixed short-file error on disc2file.

17

Update Mark-5 Software.txt 10/16/2003

2002 September 16; Added time and speed debuggery for disc2net and
disc2file.

2002 September 13; Fixed (actually a work-around for) the
missing-directory-after-reboot problem.
2002 September 10; Fixed date and time "Error" in data_check, track_check,
and scan_check with VLBA-format data. Other minor changes especially to debug
prints.
2002 September 4; Scan_set and set_scan both work, are equivalent, and are
now also queries.
2002 September 3; Scan_check now seems to be working. This query is
recommended for Field System use after each scan in lieu of data_check.
2002 August 30; Not-erased disk hangs up trying to read directory: No fix,
but now message says what's wrong. Try SSErase.
2002 August 30; Revised sspxf.bib (was faulty in 5.3.beta) from Conduant.
Skip query results for negative skip are now correct.
2002 August 29; New API and bib files from Conduant: 5.3.beta. As a result,
skip as query now works. Fixes also to skip command.
2002 August 28; Two fixes to play: Dplay now rejects waits greater than one
minute, and play=off cancels a wait in Dplay, if any.
2002 August 28; Added buffer-size parameters as unauthorized additional
parameters to in2net and disc2net or disk2net (sndbuf (default 16384) and
socbuf
(default SOCBUF = 131072) bytes) and to net2out and net2disc or net2disk
(rcvbuf
(default 87380) bytes). See setsockopt(). These are used for speed "tuning" of
eVLBI.
2002 August 28; Scan_set and scan_dir are implemented, and next_scan is
retained as a synonym for scan_dir (with added scan number).
2002 August 23; Minor fixes to net2disc and disc2net.
2002 August 22; Two new Mark-5-associated stand-alone programs, Net2file
and
File2net, are ready for beta testing and are included in this tarball.
Instructions will be ready soon; meanwhile read the headers of the source
files,
Net2file.c and File2net.c.
2002 August 19; Added "skipped" as the last parameter on data_check and
track_check. This shows the number of bytes skipped from the last previous
data_check or track_check and should be zero if both are within the same scan.
2002 August 16; Changed ROT timing for Dplay() (used only at correlator).
2002 August 15; Fixed track_check to check just the prescribed track.
(Formerly it wandered around on other tracks.)
2002 August 13; Net2disc now accepts and shows scan name.
2002 August 12; Track_check seems to be working. Use track_select to set
which track to check (but with no effect on hardware).
2002 August 8; Modifications to date and time printed from data_check? We
now
attempt to calculate and print the year and day of the year as a best guess,
but
these will be wrong if data were taken more than about 10 years ago for Mark-4
format or 1000 days (about 2.74 years) ago for VLBA format.
2002 August 7; Another fix to VLBA time in data_check? (Day number will be
0.)
2002 August 6; Disc2file and file2disc seem to be working.
2002 August 5; Start_stats and get_stats now conform to the published specs
except for default values.
2002 August 2; New libssapi.a from Conduant. Start_stats and get_stats now
work but with counts instead of seconds for bin definitions.
2002 August 2; fixed VLBA time in data_check? New sspxf.bib from Conduant.
2002 August 1; fixed disc_size?, disc_serial?, and disc_model? for case
multiple masters and no slaves.
2002 July 31; fixed disc_model? to include the whole string.

18

Update Mark-5 Software.txt 10/16/2003

2002 July 31; fixed status check on data_check? Revised skip.
2002 July 30; fixed glitch at end of response to DTS_id?
2002 July 25; new functions: SS_rev1, SS_rev2, OS_rev1, OS_rev2
2002 July 24; new libssapi.a from Conduant
2002 July 24; new API (5.3.alpha_forMIT.tgz) from Conduant
2002 July 12; new ssatap3.bib from Conduant
Revised: 2003 October 09, JAB

19

Four Mark-5A Tutorials

You should have a copy of the Mark-5A software writeup, “Mark 5A command set,” available at http://web.haystack.edu/mark5/command5a.pdf.

(1) Record short scans from the test vector generator (TVG) and check them

On the Mark-5 machine, put a disk pack (not write protected) into bank A, and turn on the bank-A keyswitch. We will erase and write on this disk pack, so
be sure that there is no data that you want to save on this disk pack in bank A. Put another disk pack (not write protected) into bank B and turn on its
keyswitch. We will write on (but not erase) this disk pack in bank B. Then start up the Mark5A program:

Mark5A -m 0 &
That -m 0 gives debuggery, which is helpful if something goes wrong, but which we’ll ignore in this tutorial, and the & puts Mark5A in the background to
allow this terminal to be used also for other things. After a minute or so, when Mark5A is ready, see (the last line):

Mark5A Ready. End with EndM5, please

Start the tstMark5A program optionally, and for this tutorial preferably, in a different terminal:
tstMark5A
tstMark5A Ready (end with ^C)
>

If tstMark5A is run on a different machine, then the tstMark5A command line needs to have the name of the Mark-5 machine (it defaults to localhost). Lines
typed by the operator into tstMark5A are preceded by the prompt > and are sent through a socket to Mark5A. The Field System can also do this; use a
‘mk5=’ prefix.

Check status:
> status?
!status? 0 : 0x02300001 ;

A ? ends a query. The line beginning with ! is the response to the status query from Mark5A. The first 0 in the response signifies that this query completed
OK. The 1 in the far right means ready. The embedded 2 means that disk bank B is ready, and the 3 (that’s 2 + 1) means that disk bank A is ready and
selected. (This happens automatically, if possible, on Mark5A startup.) If there had been a pending error, then the ‘!status?’ query response would have
printed an error message and cleared the error, if possible, for next time. More information on the ‘!status?’ response is in Appendix A, and detailed
information on all the Mark-5A commands and queries is in “Mark 5A command set” cited above.

Which version of the software and hardware do we have?
> DTS_id?
!DTS_id? 0 : Mark5A : 2003y202d10h : 1 : mark5-21 : 1 : 1 : 2.5x : 0xb4 : 0x17 ;

This says that the Mark-5A software was last diddled on year 2003, day 202, at about 10 o’clock. This machine’s serial number is mark5-21. The
corresponding writeup is version 2.5 but with extensions (x). The I/O board has input design revision 0xb4 and output design revision 0x17. Certain features
depend on these software and hardware versions.

2

The status query above shows that bank A is selected, but we can also check with:
> bank_set?
!bank_set? 0 : A ;

Next let’s erase whatever is now on the disk pack in bank A. Be sure that you don’t want to save any data now on this disk pack. Then:
> reset = erase
!reset = 0 ;

That = sign (instead of a ?) after reset means a command. Spaces in command and query lines are optional; I’ve put spaces to be more readable. This erase
operation takes only a fraction of a second, and the 0 return means that it has completed successfully.

Set the mode to TVG, test-vector generator, to prepare to make a TVG recording:
> mode = TVG
!mode = 0 ;
> mode?
!mode? 0 : tvg : : st : : - : 0 ;

Many keywords, such as mode, can be either queries (with ?) or a commands (with =). Mark5A is not case sensitive (except for file names), so TVG and tvg
are equivalent. In the TVG case, only the first and second parameters returned by the mode query are significant.

The internal TVG is on the Mark-5 I/O board, and it’s clock is set by the play_rate command (even though we’ll be recording rather than playing). The
maximum clock rate is determined by the number of disks and the mode; here let’s try 8 MHz (8 Msamples/sec or 8 Mbaud per track):

> play_rate = data : 8.0
!play_rate = 0 ;
> play_rate?
!play_rate? 0 : 8.000 : 8.000 : 8.000 ;

In the TVG case, the three numbers from play_rate are the same.

Start recording (the scan name, TVG-1, is arbitrary):
> record = on : TVG-1
!record = 1 ;

That 1 in the response means delayed completion, in this case that is recording in progress, and Mark5A will continue recording this scan until recording is
commanded off (or until space runs out on the disks). Some or all of the lights on the front of the disk pack should now be on, but, since we’re recording at
only a modest rate, maybe not fully bright.

3

Some queries work even while recording is in progress:
> status?
!status? 0 : 0x00000049 ;

That 49 is 40 (recording in progress) plus 8 (delayed completion action in progress) plus 1 (ready) and no known errors. (We lose the bank-status responses
while a data transfer is in progress.)

The position query can be used to track the progress of recording:
> position?
!position? 0 : 320024576 : 0 ;

A little later:
> position?
!position? 0 : 672067584 : 0 ;

That second (big) number is the record pointer; if it does not increase with time during recording, then something is wrong with recording.

Let it record for a minute or so, then end this scan:
> record = off
!record = 0 ;
> record?
!record? 0 : off : 1 : TVG-1 ;

So recording is now off, and we’ve just made scan number 1, whose name is TVG-1.

At record=off, the play pointer is set to the start of the scan just recorded, so we can check a snippet of this scan with:
> data_check?
!data_check? 0 : tvg : 0 : 249856 : 249856 ;

A data_check, track_check, or scan_check on a TVG scan all give the same result. The three numbers after tvg are the starting word number where Mark5A
first found TVG pattern, the word number where TVG pattern ended, and the size of the buffer, all in units of 32-bit words. So the correct answers for these
three numbers are 0 for the first, and the second and third should be equal. Although we’ve tested only a small snippet of it, this looks to be a good TVG
scan. We could play this scan, but without a test-vector receiver (TVR), we can’t test playback.

Now let’s change to bank B:
> bank_set = B
!bank_set = 1 ;

Bank_set=inc (meaning increment or, in this case, change) would have done the same. The 1 return means delayed completion; expect up to a 3-second delay
while the bank is switching. During this time, many commands and queries return errors. You can also change banks by turning on the keyswitch on the
bank you want and turning off the keyswitch on the bank you don’t want. Then check this changeover:

> bank_set?
!bank_set? 0 : B ;

4

The status query also shows that bank B is now active:
> status?
!status? 0 : 0x03200001 ;

More information about the status-query response is in Appendix A.

The mode and play_rate settings have not changed, so let’s make another short TVG recording, this one onto the disks in bank B:
> record = on : TVG-2
!record = 1 ;

And after recording for at least a few seconds, then end this scan:
> record = off
!record = 0 ;
> record?
!record? 0 : off : 35 : TVG-2 ;

So we’ve just recorded scan number 35, whose name is TVG-2. On record=off, the scan number (scan pointer) defaults to the scan just completed, so:
> scan_check?
!scan_check? 0 : 35 : TVG-2 : tvg : 0 : 249856 : 249856 ;

This also looks to be a good TVG scan. More about scan_check is in the following section.

If this is a test scan that we do not want to keep, then we can reset=erase_last_scan to delete just this one scan, or we can reset=erase, as above, to
delete all scans on the disks in this disk pack.

(2) Record a VLBI scan and copy a prescribed one minute of it to another machine

Mark5A and tstMark5A should be running from the previous tutorial. We can use the disks in either bank. Now we want to make a VLBI recording from a
formatter, so the formatter needs to be set up, checked, and connected to this Mark-5’s I/O board. We assume that this has been done, but we can also check
some parts of this setup and connection. Let’s set Mark5A to record 16 even-numbered tracks from a Mark-4 formatter:

> mode = mark4 : 16
!mode = 0 ;
> mode?
!mode? 0 : mark4 : 16 : mark4 : 16 : S : 1 ;

In the response to the mode query, the first mark4:16 is for the input section, the second for the output section of the Mark-5A I/O board. That S means
that the output section sees the correct format of VLBI data and has synchronized to it; this is an important check for recording VLBI data.

Start recording (the scan name, TestMark4-16, is arbitrary):
> record = on : TestMark4-16
!record = 1 ;

5

Use the position query to track the progress of the record pointer:
> position?
!position? 0 : 43909526022 : 0 ;

A little later:
> position?
!position? 0 : 44012206180 : 0 ;

If the record pointer stops increasing with time, then something is wrong with recording. And a status query will show certain errors:
> status?
!status? 0 : 0x00000049 ;

This all seems to be OK.

Let it record for a minute or two, then end the recording:
> record = off
!record = 0 ;

Check the scan that we’ve just recorded:
> scan_check?
!scan_check? 0 : 36 : TestMark4-16 : mark4 : 16 : 2003y199d14h35m26.590s : 159.6s : 4.000 : 0 ;

At record=off, the scan number (scan pointer) defaults to the scan just recorded. From left to right, the 0 means that scan_check completed OK, this is scan
number 36, whose name is TestMark4-16, it’s mode is mark4, 16 tracks, and it started at year 2003, day of the year 199, 14 hours, 35 minutes, 26.590 seconds
UT, it contains 159.6 seconds of data, at 4.000 Msamples/sec (nominal track data rate), and that last 0 means that no data were lost or added during this scan.

We can also do a data_check starting at the current play pointer, which, at record=off, defaults to the start of the scan just completed:
> data_check?
!data_check? 0 : mark4 : 16 : 2003y199d14h35m26.590s : 19632 : 0.00500s : 40000 : 0 ;

This data_check response repeats some of the information above. Also the first frame header was found 19632 bytes into the scan, and there are 0.00500
seconds of time and 40000 bytes (on the SS disks) from one frame header to the next.

Since this was a 16-track recording, only even-numbered tracks from 2 to 32 were recorded. If a decoder is available, then we can play this scan and check
tracks on the decoder, two at a time. Or we can check tracks on the disks using track_check. Let’s first point to track 2:

> track_set = 2
!track_set = 0 ;

6

Now a track_check will check this track:
> track_check?
!track_check? 0 : mark4 : 16 : 2003y199d14h35m26.590s : 19632 : 0.00500s : 4.000 : 2 : 0 ;

This track_check response repeats some of the information above, but the 2 in the next-to-last position shows that track 2 was found correctly. Let’s
try track 3, which we can get by an inc (for increment), which adds one to the previous value:

> track_set = inc
!track_set = 0 ;
> track_check?
!track_check? 0 : mark4 : 16 : 2003y199d14h35m26.590s : 19632 : 0.00500s : 4.000 : 2 D : 0 ;

Instead of track 3, track_check reports, correctly, a duplicate of track 2 (2 D). If the wrong track had been found, then that D would have been a ?.

Let’s try track 32:
> track_set = 32
!track_set = 0 ;
> track_check?
!track_check? 0 : ? ;

Oops! That ? means that track 32 is faulty or was not correctly recorded. In general, a returned blank means unknown; a ? alone means unknown and also
probably an error. Further checking shows that tracks numbered above 16 were not correctly recorded. Something must be done about this!

To use rtime (below), we need to set the play_rate to agree with the formatter’s sample rate (clock rate) divided by the fanout to get a track data rate. (As a
check, the formatter’s track data rate is displayed by the decoder, and the scan_check above has also calculated it.) In this case, the formatter was set to 4
MHz with no fanout:

> play_rate = data : 4.0
!play_rate = 0 ;

Now how much disk space is left for future recordings?
> rtime?
!rtime? 0 : 54415.0 : 435.321480064 : 90.7 : mark4 : 16 : 4.000 : 64.0 ;

This means that we can record approximately 54415 more seconds of data onto the 435.3 Gbytes (which is 90.7% of the total) remaining on these disks
provided that we don’t change mode or clock rate. The mode used in these calculations is mark4:16, the track data rate is 4.000 MHz (Msamples/second or
Mbaud), and this corresponds to 64.0 Mbaud total recording rate.

Next let’s copy part of this scan to a file on another machine (which need not be a Mark 5). First we need to set up to receive a file on this other machine
(fritz, in this case) using the stand-alone program Net2file. To a Linux shell, try:

Net2file
Here we’ve taken all the defaults; the data will be saved in a file named save.data in the current directory. Note that we set up the receiving machine first.

7

Then, back in the terminal with tstMark5A:
> scan_set = : 36m : +1m
!scan_set = 0 ;

After the = sign in this command, we could abbreviate the scan name, provided that there is no preceding scan with the same abbreviation in its name, or, in
this case, leave out the scan name because it defaults to the last scan recorded. The second parameter in this command sets the start byte to the first (and in
this case only) occurrence of 36m0s in this scan. (Otherwise we might have to calculate and type those eleven- or twelve-digit numbers.) We can verify this
start-byte calculation by another data_check, which reads data starting at the play pointer (same as start byte in this case):

> data_check?
!data_check? 0 : mark4 : 16 : 2003y199d14h36m00.000s : 0 : 0.00500s : 40000 : 0 ;

The third parameter in the scan_set command above (+1m) also sets the end byte to one minute later in time than the start byte. Thus we’re ready to write
one minute of data from 14h36m to 14h37m to, in this example, a file on the other machine. To send this off, we first connect to this other machine, whose
name is fritz:

> disk2net = connect : fritz
!disk2net = 0 ;

And verify that we're ready to send:
> disk2net?
!disk2net? 0 : waiting : 43619737088 : 0 : 44099737088 ;

Those two big numbers are the starting and ending byte numbers as calculated and set by scan_set above. Start the transfer:
> disk2net = on
!disk2net = 1 ;

The 1 response means delayed completion; in this case, data transfer is in progress. As time passes, we can check how we're doing:
> disk2net?
!disk2net? 0 : active : 43619737088 : 43907571199 : 44099737088 ;

That middle number, the now byte, increases and will equal the end byte when the transfer is complete:
> disk2net?
!disk2net? 0 : waiting : 43619737088 : 44099737088 : 44099737088 ;

Then, since this is all that we want to send just now, end the transfer:
> disk2net = disconnect
!disk2net = 0 ;

As a result of this disconnect, on the target machine (fritz), you should now see:
Net2file: The End

On this machine, try:
ls -l save.data

And see:
-rw-rw-r-- 1 jball users 480000000 Jul 18 12:01 save.data

8

File save.data contains the prescribed one minute of data. As an exercise for the reader, transfer this file to the SS disk(s) on a Mark-5 machine using File2net
on fritz and net2disk in Mark5A; then use scan_check to verify good data and the prescribed times.

(3) Check a recorded disk pack

Here we check a disk pack already recorded and either ready to be sent to a correlator or already at a correlator. Start up Mark5A and tstMark5A and check
status as above. The mode doesn’t matter, and we don’t need a formatter or decoder because we don’t intend to either record or play. DirList is a stand-alone
program to be run from a Linux shell prompt on the Mark-5 machine. It prints the contents of the directory as read by Mark5A. Here is an example:

DirList
 nscans 227, n 226, recpnt 657003363992, plapnt 0, playRate 8.000 MHz
 n' scan name start byte end byte
 ---- --------- ---------- --------
 1 188-1700a 81952 1603782808
 2 188-1704a 1603864760 3529321832
 3 188-1706b 3529403784 7021613440
 4 188-1709a 7021695392 8979248240
 5 188-1711 8979330192 10584384520
 6 188-1713a 10584466472 15581564320
 7 188-1716 15581646272 17186440760

. . .
 219 189-0425 631003995856 637408867376
 220 189-0430 637408949328 639558271360
 221 189-0434 639558353312 641163785328
 222 189-0436a 641163867280 647569356496
 223 189-0452 647569438448 649174512968
 224 189-0454 649174594920 650779792528
 225 189-0456 650779874480 652385314896
 226 189-0502 652385396848 653990159864
 227 189-0504 653990241816 657003363992
Note that we ran DirList after starting Mark5A and after the correct disk pack is active; otherwise we might have seen the directory from a different disk pack
previously in this machine. This disk pack has 227 scans, numbered from 1, with names and byte positions as listed. This tabulation can be compared with the
schedule (or ovex) to check for missing scans, and the starting and ending byte numbers can be checked against the log (or lvex) or even used to replace
incorrect numbers.

9

Let’s check the first scan:
> scan_set = 1
!scan_set = 0 ;
> scan_check?
!scan_check? 0 : 1 : 188-1700a : mark4 : 32 : 2003y188d16h59m50.097s : 50.1s : 8.000 : 0 ;

As in the tutorial above, reading from left to right, this scan check is OK, on scan number 1, whose name is 188-1700a, the mode is mark4:32, and this scan
started at year 2003, day of the year 188, 16 hours, 59 minutes, and 50.097 seconds UT, the scan lasted 50.1 seconds, the nominal track data rate was 8.000
Msamples/second, and 0 data were lost or added. Since this scan’s name is 188-1700a, we expect it to start on day 188 at about 17:00 UT, and it actually
started about 10 seconds early. You might want to verify these parameters; for example, was this scan really intended to last only 50 seconds?

We can check a sequence of these scans as follows:
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 2 : 188-1704a : mark4 : 32 : 2003y188d17h03m56.062s : 60.2s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 3 : 188-1706b : mark4 : 32 : 2003y188d17h06m21.080s : 109.1s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 4 : 188-1709a : mark4 : 32 : 2003y188d17h08m50.057s : 61.2s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 5 : 188-1711 : mark4 : 32 : 2003y188d17h10m57.062s : 50.2s : 8.000 : 0 ;

What’s done here is to type a command, scan_set=inc, which increments the scan number, and a query, scan_check?, on the same line with a semicolon as
separator. Then this dual-purpose line can be repeated, as shown, by typing just an up-arrow and Enter for each scan to be checked: An up-arrow copies the
previous line and Enter sends it again through tstMark5A to Mark5A. Thus we have quickly checked scans 2 through 5 with only two keystrokes per scan.

We can spot check also some scans from near the end of this disk pack:
> scan_set = 224 ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 224 : 189-0454 : mark4 : 32 : 2003y189d04h54m42.095s : 50.2s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 225 : 189-0456 : mark4 : 32 : 2003y189d04h56m46.097s : 50.2s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 226 : 189-0502 : mark4 : 32 : 2003y189d05h02m17.105s : 50.1s : 8.000 : 0 ;
> scan_set = inc ; scan_check?
!scan_set = 0 ; !scan_check? 0 : 227 : 189-0504 : mark4 : 32 : 2003y189d05h04m05.098s : 94.2s : 8.000 : 0 ;

Note that we first put scan_set=224 to point to somewhere near the end, then repeat the dual-purpose line as above. These all seem to be OK.

10

Let’s also do at least spot checks of the tracks in a scan (the last scan in this case) using a similar scheme. Tracks are numbered from 2, and all tracks from 2 to
33 should have been recorded. So try:

> track_set = 2 ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 2 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 3 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 4 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 5 : 0 ;
. . .
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 30 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 31 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 32 : 0 ;
> track_set = inc ; track_check?
!track_set = 0 ; !track_check? 0 : mark4 : 32 : 2003y189d05h04m05.098s : 41904 : 0.00250s : 8.000 : 33 : 0 ;

The track number, as before, is the next-to-last parameter returned by track_check. Rechecking scans and tracks is desirable after any change in mode or in
formatter configuration. Here the tracks seem to be OK, and we have not found any problems with the data on this disk pack.

11

(4) Condition and check the disks in a disk pack

New disks should be conditioned before their first use especially if they are to be used anywhere near their maximum data rates. Conditioning can be done by
a three-pass procedure: Write, read, and write, each through the full length of the disk. Or a special procedure inside SSErase can be used to condition up to
sixteen disks at a time using a two-pass procedure. This saves lots of time, but it’s still slow.

Important: Note that any operation with SSErase, as the name implies, erases any data that may be on the SS disk or disks.

For the following procedure, Mark5A should not be running. Shut it down, if need be, using EndM5. Mount the disk pack to be erased and conditioned in
bank A and turn on the keyswitch. In the following example, we have a two-pack of 120-Gbyte disks. Start SSErase:

SSErase -m 0 -c 1 &
The optional -m 0 turns on lots of debug printing, the -c 1 turns on conditioning (otherwise it just erases), and the optional & puts SSErase into the
background and so allows the same terminal to be used for other things. Then see:

SSErase DEBUG: msglev set to 0
SSErase DEBUG: cond set to 1
SSErase DEBUG: XLRDeviceFind() OK
SSErase DEBUG: Trying to XLROpen() ...
SSErase DEBUG: XLROpen() OK
SSErase DEBUG: Bank A is not write protected
SSErase DEBUG: GetDeviceInfo() OK
SSErase DEBUG: BoardType PCI-816V100, SerialNum 7140, NumDrives 2,
 NumBuses 2, TotalCapacity 58577740 * 4096 bytes
 MaxBandwidth 0 PciBus 0x1 PciSlot 0x3
SSErase DEBUG: XLRSetOption() drive stats OK
SSErase DEBUG: XLRSetDriveStats() OK
SSErase DEBUG: Erase start OK
SSErase NOTE: This will run a long time
SSErase DEBUG: In progress, 117295349760
SSErase DEBUG: In progress, 114364121088
SSErase DEBUG: In progress, 111450783744
SSErase DEBUG: In progress, 108538363904
SSErase DEBUG: In progress, 105528819712
SSErase DEBUG: In progress, 102638551040
SSErase DEBUG: In progress, 99755556864
SSErase DEBUG: In progress, 96894779392
SSErase DEBUG: In progress, 94038392832
SSErase DEBUG: In progress, 91216281600
. . .
SSErase DEBUG: In progress, 13076398080

12

SSErase DEBUG: In progress, 11179917312
SSErase DEBUG: In progress, 9380888576
SSErase DEBUG: In progress, 7606108160
SSErase DEBUG: In progress, 5839257600
SSErase DEBUG: In progress, 4182507520
SSErase DEBUG: In progress, 2527723520
SSErase DEBUG: In progress, 885260288
SSErase DEBUG: Erase finished
SSErase DEBUG: That took 6110.3 seconds
SSErase DEBUG: XLRSetUserDir() OK
SSErase DISK: 0, WD-WMA8C2588610
SSErase STATS: 0 : 1211339 : 1830784 : 605143 : 3388 : 11908 : 216 : 17 : 11 ;
SSErase DISK: 2, WD-WMA8C2588979
SSErase STATS: 2 : 1219792 : 1825763 : 599746 : 3410 : 14071 : 19 : 3 : 2 ;
SSErase DEBUG: XLRClose() OK

With -m 0, the “In progress” debug prints occur about once a minute so that you’ll know that the program hasn’t gone comatose. Here we’ve skipped most
of these prints. Conditioning these two disks took 102 minutes. The eight “STATS” numbers are stats (see get_stats) for these two disks and are within the
normal range although the first disk is not as good as the second as indicated by larger numbers in the right-most (longest-time) three bins. The stats after
conditioning usually look worse than the stats for the same disks after normal recording.

If, after conditioning a set of disks, you break them up into a different configuration, then an additional erase step is required. In particular, if you condition
two eight-packs at a time (sixteen disks), then do an additional SSErase (without the -c 1 conditioning) on each pack in bank A separately. A similar SSErase
is needed for each part of an eight-pack that is split up into individual disks or two-packs. This extra SSErase (without -c 1 conditioning) will take only a few
seconds in part because SSErase has no reset at its end. When you’re all done with SSErase, then we recommend an SSReset.

13

Appendix A: Summary of return from 'status?' query

0x00000001 Ready
0x00000002 Error (message may be appended)
0x00000004 (Not used)
0x00000008 Delayed completion action in progress
0x00000010 Delayed completion request in progress
0x00000020 (Not used)
0x00000040 Recording in progress
0x00000080 Media full (recording halted)
0x00000100 Playing in progress
0x00000200 End of scan (scan_play) or end of data (playing halted)
0x00000400 Recording throttled (can't keep up, some data loss)
0x00000800 (Not used)
0x00001000 Disk2file active
0x00002000 File2disk active
0x00004000 Disk2net active
0x00008000 Net2disk active or waiting
0x00010000 In2net sending (on)
0x00020000 Net2out active or waiting
0x00040000 (Not used)
0x00080000 (Not used)
 Following are set only if in bank mode and no data transfers are in progress:
0x00100000 Bank A selected
0x00200000 Bank A ready
0x00400000 Bank A media full
0x00800000 Bank A write protected
0x01000000 Bank B selected
0x02000000 Bank B ready
0x04000000 Bank B media full
0x08000000 Bank B write protected

Revised: 2003 September 14, JAB

RedHat Linux Network Configuration

To do the network configuration of your RedHat Linux Mark-5 computer, you’ll
need to have the following information, perhaps from your system administrator
(sysadmin): official hostname, (local) domain name, internet protocol (IP) address
of this computer, the netmask for this network, the IP address of at least one domain
name server (DNS), and the IP address of a gateway.

You’ll need to be in X mode (try startx), then bring up the network-configuration
box by typing netcfg to a Linux shell prompt. If you’re not already logged in as
root, then you’ll be asked for the root password.

Show this view by clicking on the ‘Names’ tab. ‘Hostname’ is the official name of
this computer as listed in your domain name server (DNS), ‘Domain’ is the official
domain name also as in your DNS. In the ‘Nameservers’ box, you need to put the IP
address of at least one local DNS, which will be used to look up IP numbers of other
computers. Add or correct this information by clicking on the appropriate box and
typing or backspacing and retyping. Do not ‘Save’ or ‘Quit’ until you’ve done the
other three tabs.

2

Show this view by clicking on the ‘Hosts’ tab. Two lines are required in this box;
one should already be there, namely the first line with localhost. You’ll need to
‘Add’ or click on and then ‘Edit’ the line that has the official name of your computer,
mark5-01 in this example. You’ll need to type the official IP number, the official
name with domain, and any nicknames that you want, typically the name without the
domain as in this example. If there are other lines with other computers, as in this
example, you can either ‘Remove’ them, if they are incorrect or unneeded, or
otherwise leave them.

3

Show this view by clicking on the ‘Interfaces’ tab. Two lines are required in this box;
one should already be there, namely the first line with ‘lo’ and ‘127.0.0.1'. You’ll
need to ‘Add’ or click on and ‘Edit’ a line with ‘eth0'. You’ll need the official IP
address of this computer, ‘192.52.61.175' in this example, and the netmask,
‘255.255.255.0' for a class-C network in this example. ‘Activate interface at boot
time’ should be pushed (red), and ‘...protocol’ should be ‘static’. You may need to
click ‘Activate’. Your computer may not have an ‘eth1'.

4

Show this view by clicking on the ‘Routing’ tab. You’ll need to ‘Edit’ the ‘Default
Gateway’ to the IP number of your gateway to the rest of the world. Nothing more
is needed.

Go back and review all the names and numbers under all four tabs before clicking
‘Save’ and then ‘Quit’.

Revised: 2003 September 14, JAB

Additional Mark-5 Linux Configurations

These notes are intended to help with the several topics that need to be done when
you receive a new Mark-5 machine from either Haystack or Conduant. Network
configuration is covered in a separate document, “RedHat Linux Network
Configuration.”

Some of these operations involve editing a text file. If you are not already familiar
with either of the standard Linux editors, vi or emacs, then you might want to look
into Midnight Commander (mc), which is a Linux imitation of the old Norton
Commander from DOS. mc is run mostly with function keys and arrow keys, in
text mode, so it can be used even without X, and it contains a simple and easy-to-use
text editor. Try it first just to look around at what’s on the disk.

Note that most of the following operations must be done as root.

Time Zone

The local time zone is determined by the file /etc/sysconfig/clock, which will
contain a line such as

ZONE="America/New_York"
You may change this to any of the similar arguments found in /usr/share/zoneinfo
and its many subdirectories. Changes in this file take effect on the next boot.

Update Time from NTP

Look at the file /etc/rc.d/rc.local. Near the end, you should find a line such as
/usr/bin/ntpdate -b -p 8 -u gauss

or
/usr/jball/bin/ntpdate -b -p 8 -u gauss

where gauss is the name or IP address of a Network Time Protocol (NTP) server
machine. Use your editor to change gauss to the name or IP address of a nearby
and accessible NTP server. See http://www.eecis.udel.edu/~mills/ntp/ if in doubt.
Check that you can reliably ping the chosen NTP server. This rc.local file is
executed on boot.

Then look in the directory /etc/cron.daily for a file named ntpdate or timeupdate. If
you have such a file (the name doesn’t matter), and it contains an ntpdate line such as
above, then edit it to replace gauss just as you did above. If such a file does not
exist, then make a file ntpdate and type a line:

#!/bin/bash
(with that # in column 1) followed by an ntpdate line as above. Save this file and
change the permissions on this new file:

chmod 0755 ntpdate
and make sure that it is owned by root. It will be executed once a day.

Alternatives to this scheme are described in “Mark 5 Linux Configuration
Instructions.”

Revised: 2003 September 14, JAB

http://www.eecis.udel.edu/~mills/ntp/

Mark-5 Auxiliary Programs

Several sometimes-useful auxiliary programs accompany the Mark-5 system. Following are
a brief descriptions of these. Two programs from Conduant:

ssopen
which opens and does a quick test of the SS card to verify readability, and

sstest
which erases and writes a scan of 33554432 bytes of SS pattern onto the SS disks. Important:
Do not use sstest on disks that have data to be saved.

The following programs are Mark-5 specific.

tstMark5A [machine]
where machine defaults to localhost. Mark5A should already be running on machine, but
tstMark5A can run on some other machine including most Linux and HP-UX machines
and probably others. This program accepts commands and queries as defined in the
Mark5A software documentation, sends them to Mark5A on machine, and prints the
responses.

SSErase [-m m] [-c c] [-h]
where m (msglev) is the debug message level, range -1 to 3, default 1, c sets conditioning (0
for FALSE, 1 TRUE, default FALSE), and -h (alone) prints a help message. Mark5A must
not be running. This program erases all data on SS disks. SSErase is useful to test the write-
ability of disks and to prepare disks to be recorded. If a disk pack is write protected, then
SSErase asks permission to remove this protection as is necessary to erase.

If c is 1 (TRUE), then SSErase also goes through the long conditioning process on whatever
disks it can access, up to 16 at a time in both banks. If m is set to 0, then debug prints about
once a minute during conditioning to show what's happening.

Conditioning disks is recommended before recording especially if they are to be recorded at
or near their maximum data rate. Conditioning amounts to a write-read-write cycle through
the whole set of disks, but SSErase does this in two rather than three passes. Printed with
debuggery and counting down twice is the number of bytes per bus. With an 8-disk pack,
for example, this count starts at a quarter of the total capacity, which is twice the capacity of
a single disk.

Conditioning one 120-Gbyte disk takes about 101 minutes; two 120-Gbyte disks (as two
masters), 103 minutes; four 120-Gbyte disks (as four masters), 111 minutes; eight
120-Gbyte disks (an eight pack), 157 minutes; and sixteen 120-Gbyte disks (two eight
packs), 278 minutes. 200-Gbyte disks take about 5/3

rds as long—no surprise. Conditioning
one 200-Gbyte disk takes about 160 minutes; eight 200-Gbyte disks, 286 minutes; and
sixteen 200-Gbyte disks, 465 minutes. These times are approximate and for the ideal case,
but, if any of the disks has a problem, then times can be much longer.

After conditioning two disk packs at a time (i.e., more than eight disks), or in any case
where you change the disks into a different configuration, then you should also SSErase
(without -c 1) each disk pack separately before recording. This takes only a few extra
seconds.

SSReset
This program performs an XLRCardReset(), which often helps extricate the system from a
no-fair state. Use before starting Mark5A.

DirList [-m m] [-f filename] [-h]
where m (msglev) is the debug message level, range -1 to 3, default 1, filename sets the
name of the Mark-5 directory file, default /var/dir/Mark5A, and -h (alone) prints a help
message. DirList reads the Mark-5 directory and lists the contents including the starting
and ending byte numbers of all completed scans. DirList can run simultaneously with
Mark5A, in which case the listing will be up to date except for any scan being recorded at
the time. If Mark5A is dismounted (i.e., no disk pack active), then the listing will be
appropriate for the SS disk(s) that were in place before the dismount. Or if Mark5A is not
running, then the listing will be appropriate for whatever was happening last time Mark5A
was running. This is equivalent to saying that DirList does not read SS disks, instead it reads
whatever Mark5A has written into /var/dir/Mark5A or filename.

Following are notes about two stand-alone programs intended to exchange data with Mark-
5 machines and primarily intended to run on computers other than Mark-5 machines. The
source code contains hints for compiling on Linux and HP-UX.

Net2file [filename]
accepts a connection from a Mark-5 machine and writes the received data to filename or
to save.data if filename is blank. This file will be created if necessary or appended. Start
Net2file first, then command disc2net or in2net in the Mark-5 machine. Monitor progress
with

ls -l filename
but this will lag the actual progress because of buffering. Net2file will end when the Mark-5
machine disconnects or with <Ctrl>C, after which filename will be ready to use.

File2net machine [filename [startbyte [endbyte]]]
sends a file or part of a file to a Mark-5 machine. Command net2disc or net2out in the
Mark-5 machine first, then start File2net. Filename defaults to save.data, startbyte
defaults to 0, and endbyte defaults to the end of the file. File2net ends when the
prescribed transfer is done.

Revised: 2003 September 14, JAB

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

 Telephone: 978-692-4764
 Fax: 781-981-0590

4 September 2003

TO: Distribution
FROM: A. R. Whitney and J. A. Ball
SUBJECT: Mark 5A command set (Revision 2.6)

1. Mark5A program
The commands detailed in this memo are implemented by a program named Mark5A running under Red
Hat Linux on the Mark 5P or Mark 5A system. The details concerning the operation of Mark5A are
available in documents at http://web.haystack.mit.edu/mark5/Mark5.htm (see ‘Mark 5P test procedures’ for
instructions for using Mark 5A in a simple interactive mode; see ‘Mark 5A control program and utilities’ for
much more detail).

Note: The command-line options for Mark 5A revisions 2.5 and later are different than earlier versions. In
particular, the startup command-line for has been updated to be in accord with Linux conventions, as
follows:

Mark5A –m [-1|0|1|2|3] –f [0|1] –s [1|2|3|4|5|6|7] –h (defaults underlined)
where

m – message level (range –1 to 3, default 1)
 -1 A vast quantity of debug
 0 Some debug
 1 Normal operation; warnings and errors
 2 Only errors and operational messages
 3 Only fatal errors when the program dies

f – parsing mode (0 – ‘informal’ parsing; 1 – ‘formal’ parsing, i.e. VSI-S syntax; default 1)

s – maximum number of allowed socket connections (range 1 to 7; default 7)

h – help on startup parameters

When run in a TK200 chassis (with ‘8-pack’ disk modules), Mark5A will operate only in so-called ‘bank
mode’. When run in an obsolete Anova chassis, Mark5A will operate only in the old Mark5P ‘non-bank
mode’.

2. Notes on command set
The following should be noted with respect to the command set:

1. All commands/queries are implemented using the VSI-S communications protocol and
command/response syntax.

2. Commands/queries are case insensitive.

MARK 5A COMMAND SET 1

http://web.haystack.mit.edu/mark5/Mark5.htm

3. Versions of program ‘Mark5A’ with a revision date earlier than the date on this memo may not
implement all commands indicated in this memo or, in some cases, may implement them in a
different way (use ‘DTS_id’ query to get revision date of current system software – see ‘System
Queries and Responses’).

3. VSI-S Command, Query and Response Syntax
The following explanation of the VSI-S syntax may be useful in understanding the structure of commands,
queries and their respective responses. This explanation has been lifted directly from the VSI-S
specification.
3.1 Command Syntax
Commands cause the system to take some action and are of the form
 <keyword> = <field 1> : <field 2> : …. ;
where <keyword> is a VSI-S command keyword. The number of fields may either be fixed or indefinite;
fields are separated by colons and terminated with a semi-colon. A field may be of type decimal integer,
decimal real, integer hex, character, literal ASCII or a special ‘time’ code (see Section 7.2). White space
between tokens in the command line is ignored, however most character fields disallow embedded white
space. VSI-S keywords are listed in Section 9.

3.2 Command-Response Syntax

Each command elicits a response of the form

!<keyword> = < return code > [:<DTS-specific return> :….] ;

where

<keyword> is the command keyword

<return code> is an ASCII integer as follows:
0 - action successfully completed
1 - action initiated or enabled, but not completed
2 - command not implemented or not relevant to this DTS
3 - syntax error
4 - error encountered during attempt to execute
5 - currently too busy to service request; try again later
6 - inconsistent or conflicting request1
7 - no such keyword
8 - parameter error

<DTS-specific return> - one or more optional fields specific to the particular DTS, following the
standard fields defined by VSI-S; fields may be of any type, but should be informative about the
details of the action or error.

3.3 Query and Query-Response Syntax

Queries return information about the system and are of the form

<keyword> ? <field 1> : <field 2> : …. ;

with a response of the form

!<keyword> ? <field 1(return code)> : <field 2> : <field 3> : …: [<DTS-specific return>];

where

MARK 5A COMMAND SET 2
1 For example, it is illegal to attempt to record during playback or position unloaded media.

<return code> is an ASCII integer as follows:
 0 - query successfully completed
 1 - action initiated or enabled, but not completed
 2 - query not implemented or not relevant to this DTS
 3 - syntax error
 4 - error encountered during attempt to execute query
 5 - currently too busy to service request; try again later
 6 - inconsistent or conflicting request
 7 - no such keyword
 8 - parameter error
 9 - indeterminate state

Note: A ‘blank’ in a returned query field indicates the value of the parameter is unknown.
A ‘?’ in a returned query field indicates that not only is the parameter unknown, but that some sort of
error condition likely exists.

4. Simplified Diagrams of Various Mark 5 Data Transfer Modes

SSdisks SSdisks

CorrelatorI/O BoardI/O Board

disk2net

disk2net

in2net

in2net net2out

net2out

net2disk

net2disk

Network

Formatter

Mark 5Mark 5 Mark 5

Figure 1: Mark 5 to Mark 5 transfer through network

Formatter

disk2net

in2net

OS disk

Net2file

Net2file

Other MachineMark 5

SSdisks

I/O Board

Mark 5

Figure 2: Mark 5 to file transfer through network

SSdisks

I/O Board

Mark 5

File2net net2disk

File2net net2out

Other Machine

OS disk

Correlator

Figure 3: File to Mark 5 transfer through network

SSdisks OS
disk

Mark 5

disk2file

file2disk

Figure 4: Internal Mark 5 to file transfer

MARK 5A COMMAND SET 3

5. Comments on ‘Play Pointer’, ‘Record Pointer’ and ‘Scan Pointer’
Three different pointers are maintained by the Mark 5A system and it is important to understand what they
are, what they mean, and how they are managed. The play pointer and record pointer are byte numbers
(number of bytes), not pointers in the sense of C programs; the scan pointer points to a particular recorded
scan.

5.1 Record Pointer

The Mark 5 system records data to a disk set much as if it were a tape. That is, recording starts from the
beginning and gradually fills the disk set as scans are recorded one after another. The ‘record pointer’
indicates the current recording position (in bytes, always a multiple of 8) which, at any instant, is just the
current total number of recorded bytes. Arbitrary recorded scans cannot be erased; however, individual
scans may be erased in order from last to first. The entire disk set is erased by setting the record pointer
back to zero using the ‘reset=erase’ command.

The record pointer can be modified in the following ways:
1. A ‘reset=erase’ command forces the record pointer to zero.
2. A ‘reset=erase_last_scan’ sets the record pointer to the beginning of the space occupied by the

erased scan.
3. A ‘record=on’ command causes recording to start at the current record pointer position and

increment at the total recording data rate.
4. The ‘net2disk’ and ‘file2disk’ commands act similarly to the ‘record=on’ command, except that the

data originates from either a network connection or a Linux file, respectively.

The current value of the record pointer can be queried with the ‘position’ query.

5.2 Play Pointer

The ‘play pointer’ indicates the current playback position (in bytes, always a multiple of 8) from the
beginning of the disk set. The play pointer may never be larger than the ‘record pointer.’ The play pointer
can be modified in the following ways:

1. A ‘reset=erase’ commands forces the play pointer to zero.
2. On ‘play=on:<start byte#>’, the play pointer is set to <start byte#> before play starts. If

<start byte#> is not specified, playback start at the current play-pointer position.
3. On ‘play=off’ or when playback reaches the end of recording, the play pointer is updated to the point

at which playback stopped. If not at the end of the recording, a subsequent ‘play=on’ command will
continue play from this point. On ‘play=off:<byte#>’, playback is stopped and the playback pointer
is set to the specified byte number.

4. On ‘record=off’ or end-of-media (following a ‘record=on’), the play pointer is set to the beginning
of the just-recorded scan.

5. A ‘scan_set=<scan name|scan number>:….’ command sets the play pointer to the specified point
within the specified scan; it also sets the scan pointer to the specified scan (see below).

6. A ‘scan_play’ command sets the play pointer to the beginning of the scan corresponding to the
current scan pointer (see below) and commences play. Play stops at the end of the scan and the
playback pointer updated to the stop position.

The current value of the play pointer can be queried with the ‘position’ query.

5.3 Scan Pointer

For the convenience of the user, the notion of a ‘scan pointer’ exists with respect to several commands; in
actuality, the ‘scan pointer’ refers to a particular recorded scan. Actions affecting the scan pointer also
often affect the play pointer. The ‘scan pointer’ can be modified in only two ways:

MARK 5A COMMAND SET 4

1. On ‘record=off’ or end-of-media (following a ‘record=on’), the scan pointer is set to the just-
recorded scan; the play pointer is set to the beginning of the just-recorded scan.

2. A ‘scan_set=<scan name|scan number>:s|c|e’ command sets the ‘scan pointer’ to the specified scan,
as well as setting the play pointer within the scan as specified.

The following actions are affected by the value of the scan pointer:
1. A ‘scan_play’ command sets the play pointer to the beginning of the scan corresponding to the

current scan pointer and commences play; the scan pointer is not affected.
2. A ‘scan_set?’ query returns information about the scan pointed to by the scan pointer.
3. A ‘scan_check?’ query returns information regarding the scan pointed to by the scan pointer.

5.3 Directory management

The Mark 5 maintains a scan directory on each disk set. The following queries are used to retrieve directory
information:

1. The ‘dir_info’ query reports the number of scans plus information about remaining disk space.
2. The ‘scan_set?’ query reports the directory information for the current scan_set scan. A

‘scan_set=inc’ command increments to the next directory entry, which can then be queried with a
‘scan_set?’ query.

MARK 5A COMMAND SET 5

6. Mark 5A Command/Query Summary (by Category)
6.1 General

DTS_id p. 21 Get system information (query only)

error p. 22 Get error number/message (query only)

OS_rev1 p. 30 Get details of operating system (query only)

OS_rev2 p. 31 Get more details of operating system (query only)

reset p. 41 Reset Mark 5 unit (command only)

SS_rev1 p. 49 Get StreamStor firmware/software revision levels, part 1 (query only)

SS_rev2 p. 50 Get StreamStor firmware/software revision levels, part 2 (query only)

status p. 52 Get system status (query only)

task_ID p. 53 Set task ID (primarily for correlator use)

6.2 Record/Play

mode p. 26 Set data recording/playback mode

play p. 32 Play data from current play pointer position

play_rate p. 34 Set playback data rate; set tvg rate

position p. 36 Get current record and play pointers (query only)

record p. 38 Record data from Mark 5 input to disks

rtime p. 42 Get remaining record time on current disk set (query only)

scan_play p. 45 Play scan specified by current value of scan_set parameters

scan_set p. 46 Set scan playback parameters for scan_play, disk2file and disk2net commands.

skip p. 48 Skip forward|backward specified # of bytes while playing

6.3 Data Checking

data_check p. 12 Check data starting at position of current play pointer (query only)

scan_check p. 43 Get scan parameters (query only)

track_check p. 54 Check data on selected track (query only)

track_set p. 56 Select tracks for monitoring with DQA or ‘track_check’

6.4 Data Transfer

disk2file p. 18 Transfer data from Mark 5 to file

disk2net p. 19 Transfer data from Mark 5 to network

file2disk p. 23 Transfer data from file to Mark 5

in2net p. 25 Transfer data directly from Mark 5 input to network

net2disk p. 28 Transfer data from network to Mark 5

net2out p. 29 Transfer data directly from network to Mark 5 output

MARK 5A COMMAND SET 6

6.5 Bank Management

bank_set p. 10 Select active bank for recording or playback

bank_switch p. 11 Enable|disable automatic bank-switching (not yet implemented)

6.6 Data Directory

dir_info p. 14 Get directory information (query only)

6.7 Disk Info

disk_model p. 15 Get disk model numbers (query only)

disk_serial p. 16 Get disk serial numbers (query only)

disk_size p. 17 Get disk sizes (query only)

get_stats p. 24 Get disk-performance statistics (query only)

replaced_blks p. 40 Get number of replaced blocks during playback

start_stats p. 51 Start gathering disk-performance statistics.

VSN p. 57 Write module VSN to permanent area

MARK 5A COMMAND SET 7

7. Mark 5A Command/Query Summary (Alphabetical)

bank_set p. 10 Select active bank for recording or playback

bank_switch p. 11 Enable|disable automatic bank-switching (not yet implemented)

data_check p. 12 Check data starting at position of current play pointer

dir_info p. 14 Get directory information (query only)

disk_model p. 15 Get disk model numbers (query only)

disk_serial p. 16 Get disk serial numbers (query only)

disk_size p. 17 Get disk sizes (query only)

disk2file p. 18 Transfer data from Mark 5 to file

disk2net p. 19 Transfer data from Mark 5 to network

DTS_id p. 21 Get system information (query only)

error p. 22 Get error number/message (query only)

file2disk p. 23 Transfer data from file to Mark 5

get_stats p. 24 Get disk-performance statistics (query only)

in2net p. 25 Transfer data directly from Mark 5 input to network

mode p. 26 Set data recording/playback mode

net2disk p. 28 Transfer data from network to Mark 5

net2out p. 29 Transfer data directly from network to Mark 5 output

OS_rev1 p. 30 Get details of operating system (query only)

OS_rev2 p. 31 Get more details of operating system (query only)

play p. 32 Play disk data from current play pointer position

play_rate p. 34 Set playback data rate; set tvg rate

position p. 36 Get current record and play pointers (query only)

record p. 38 Record data from Mark 5 input to disks

replaced_blks p. 40 Get number of replaced blocks during playback

reset p. 41 Reset Mark 5 unit (command only)

rtime p. 42 Get remaining record time on current disk set (query only)

scan_check p. 43 Get scan parameters (query only)

 p. 45 Play scan specified by current value of scan_set parameters

scan_set p. 46 Set scan playback parameters for scan_play, disk2file and disk2net commands.

skip p. 48 Skip forward|backward specified # of bytes while playing

SS_rev1 p. 49 Get StreamStor firmware/software revision levels, part 1 (query only)

SS_rev2 p. 50 Get StreamStor firmware/software revision levels, part 2 (query only)

start_stats p. 51 Start gathering disk-performance statistics.

status p. 52 Get system status (query only)

task_ID p. 53 Set task ID (primarily for correlator use)

scan_play

MARK 5A COMMAND SET 8

track_check p. 54 Check data on selected track (query only)

track_set p. 56 Select tracks for monitoring with DQA or ‘track_check’

VSN p. 57 Write module VSN to permanent area

8. Mark 5A Command Set Details

This section contains a complete description of all Mark 5A commands/query in alphabetical order.
Highlights in red are changes and updates from Revision 2.5.

MARK 5A COMMAND SET 9

bank_set

bank_set – Select active bank for recording or playback [command list]
Command syntax: bank_set = <bank> ;
Command response: ! bank_set = <return code> ;

Query syntax: bank_set? ;
Query response: ! bank_set ? <return code> : <active bank> ;

Purpose: When in bank mode, the selected bank becomes the ‘active’ bank for all Mark 5A activities.

Settable parameters:
Parameter Type Allowed values Default Comments

<bank> char A | B | inc A ‘inc’ increments to next bank in cyclical fashion around available bank; see Note 1.

Monitor-only parameters:
Parameter Type Values Comments

<active bank> char A | B Currently active module

Notes:
1. If the requested bank is not the bank already selected, a completion code of ‘1’ (delayed completion) is returned. Bank switching takes a

variable amount of time up to about 3 seconds. While bank switching is in progress, many commands and queries will return a code of 5
(busy, try later) or 6 (conflicting request; in effect, neither bank is mounted during this transition). If an attempt to switch the bank fails (e.g. if
there is no ‘ready’ disk module in the other bank), a ‘status?’ or “error?’ query will return error 1006, “Bank change failed.” A ‘bank_set?’
query will indicate whether the bank has changed. Switching banks can also generate other errors if there are problems with the target bank.

2. The ‘bank_set’ command may not be issued during recording or playback.
3. A ‘bank_set?’ query always returns the currently active module, which may change dynamically if automatic bank switching is enabled or if

the operator changes banks using the keyswitches.

bank_set

MARK 5A COMMAND SET 10

bank_sw
itch

bank_switch – Enable/disable automatic bank-switching (Not Yet Implemented) [command list]
Command syntax: bank_switch = <auto-switch on/off> : [<mode>] ;
Command response: !bank_switch = <return code> ;

Query syntax: bank_mode? ;
Query response: !bank_mode ? <return code> : <auto-switch on/off> : [<mode>] ;

Purpose: Enable/disable automatic bank-switching for both record and playback.

Settable parameters:
Parameter Type Allowed values Default Comments

<auto-switch mode> char off | on off If ‘on’, enables automatic bank-switching.

<mode> char - - Switching mode

Notes:
1. When automatic bank-switching is enabled, the following actions are triggered when recording hits end-of-media (say, on Bank A):

a. Bank A stop recording and updates its directory.
b. Bank B is selected as the ‘active’ bank (assumes Bank B is ready).
c. Recording starts on Bank B and continues until a ‘record=off’ command is issued.

2. A similar sequence of events is executed during playback at the correlator; it is likely that some minor re-synchronization will be required by
the correlator after the switching event.

3. During the bank-switching action, up to one second of data may be lost.
4. In the example above, if Bank B is not empty, the data on Bank B will be extended in the usual manner (i.e. no existing data on Bank B will be

lost).
5. If the alternate Bank is not ready at the time switching is initiated, the recording or playback will stop.
6. The ‘continuation segment’ of the scan on the alternate disk module maintains the same directory information (scan name, experiment name,

comments, etc.) as the ‘initial’ segment.
7. ‘Initial’ and ‘continuation’ segments are identified by a preceding or trailing ‘+’ character added to the scan name when a ‘scan_set?’ query is

executed.

bank_sw
itch

MARK 5A COMMAND SET 11

data_check – Check data starting at position of current play pointer (query only) [command list]

Query syntax: data_check? ;
Query response: !data_check ? <return code> : <data mode> : <data submode> : <data time> : <byte offset> :

<track frame period> : <#bytes in frame> : <#missing bytes>;

Purpose: Reads a small amount of data starting at the present play pointer position and attempts to determine the details of the data,
including recording mode and data time. For most purposes, the ‘scan_check’ command is more useful. Please be especially attentive
to Note 1 for the track set that must be recorded.

Monitor-only parameters:
Parameter Type Values Comments

<data mode> char st |
mark4 | vlba |

tvg | SS

See ‘mode’ command for explanation of data modes;
’tvg’ corresponds to VSI test pattern;’ SS’ corresponds to StreamStor test pattern
’?’ indicates unknown format.

<data submode> int 8 | 16 | 32 | 64 |
mark4 | vlba

‘8|16|32|64’ if <data mode> is ‘mark4’ or ‘vlba’;
’mark4|vlba’ if <data mode> is ‘st’
When <data mode>=’tvg’, returns special diagnostic info - see Note 6.

<data time> time Time tag from next ‘track’ frame header beyond current play pointer. See Note 5 of ‘scan_check’.
When <data mode>=’tvg’, returns special diagnostic info - see Note 6.

<byte offset> int Byte offset from current play pointer to beginning of next ‘track’ frame header.
When <data mode>=’tvg’, returns special diagnostic info - see Note 6.

<track frame period> time Time tag difference between adjacent track frames; allows sample-rate determination

<#bytes in frame> int Total #bytes in recording between track frame headers.
This is a useful (if somewhat redundant) number. For ‘st:mark4’ mode: should always be
90,000 (i.e. 32*2500*9/8); for ‘st:vlba’ mode, should always be 90,720 (i.e. 32*2520*9/8).
For mode ‘mark4:#trks’, will be (#trks*2500); for mode ‘vlba:#trks’, will be (#trks*2520), where ‘#trks’ is 8, 16, 32, or
64.

<#missing bytes> int bytes Number of missing bytes between last and current ‘data_check’;
Should be =0 if immediately previous ‘data_check’ was within same scan
Meaningless if immediately previous ‘data-check was in a different scan, or if data are not formatted VLBI data.
See Notes 4 and 5; see also Note 6 in ‘scan_check’

Notes:
1. Starting at the present play-pointer position, the ‘data_check’ query searches through all possible recording modes until it can make sense of

the data, then reports what it has found; ‘mark4:xx’, ‘vlba:xx’, ‘st:mark4’ and ‘st:vlba’ modes must have been recorded data from a VLBA or
Mark 4 formatter. In order for the ‘data_check’ command to be successful with data recorded from a VLBA or Mark 4 formatter, a minimum
set of tracks must be recorded according to the following table:

mode:submode Minimum set of Mark4/VLBA tracks that must be active
‘mark4:8’ or ‘vlba:8’ - 8 tks 2-16 even (headstack 1)

‘mark4:16’ or ‘vlba:16’ - 16 tks 2-16 even or 18-33 even (headstack 1)
‘mark4:32’ or ‘vlba:32’ or any ‘st’ mode - 32 tks 2-9 or 10-17 or 18-25 or 26-33 (headstack 1)

‘mark4:64’ or ‘vlba:64’ - 64 tks 2-9 or 10-17 or 18-25 or 26-33 (headstack 1 or headstack 2)

MARK 5A COMMAND SET 12

data_check
data_check

data_check

2. The ‘data_check’ query will be honored only if record and play are both off.
3. The ‘data_check’ query does not affect the play pointer.
4. A blank will be returned in the <#missing bytes> field if the # of missing bytes cannot be calculated; for example, if the data are tvg data or

other non-VLBI-format test data, the <#missing bytes> parameter is meaningless.
5. Regarding the ‘data time’ value returned by the ‘data_check?’, ‘scan_check?’ and ‘track_check?’ queries: The Mark 4 time-tags contain the

day-of-year (DOY) but only the final digit of the year; the VLBA time-tags contain, instead, the last 3 digits of the Julian day number
(misnamed MJD). To show the year and DOY in the returned values of ‘data time’ requires some assumptions. For Mark 4, we assume the
most recent year consistent with the unit-year and DOY written in the Mark 4 time-tag; this algorithm reports the proper year provided the
data were taken no more than 10 years ago. For VLBA, we assume the most recent Julian Day Number (JDN) consistent with the last 3 digits
available in the VLBA time-tag; this algorithm reports the proper year provided the data were taken no more than 1000 days ago.

6. When the <data mode> is determined to be ‘tvg’ or ‘SS’, three integer diagnostic parameters are returned following <data mode>. A buffer of
data is read (typically ~1MB) from the disks at the present play pointer position, which is analyzed. The following information is returned:

a. Position of first 32-bit word (starting from zero) in buffer containing first valid word in the ‘tvg’ or ‘SS’ sequence.
b. Position of first 32-bit word which is not in the proper order of the ‘tvg’ or ‘SS’ sequence.
c. Size of block read.

For a properly operating system, the first number will be 0 and the 2nd and 3rd numbers will have the same values.

data_check

MARK 5A COMMAND SET 13

dir_info

dir_info – Get directory information (query only) [command list]

Query syntax: dir_info? ;
Query response: !dir_info ? <return code> : <number of scans> : <total bytes recorded> : <total bytes available> ;

Purpose: Returns information from the data directory, including number of scans, total bytes recorded and remaining bytes available.

Monitor-only parameters:
Parameter Type Values Comments

<number of scans> int Returns number of scans currently in the data directory.

<total bytes recorded> int Sum over all recorded scans

<total bytes available> int Sum of total available disk space (unrecorded plus recorded)

Notes:
1. The scan directory is automatically appended each time data are recorded to the disks (added after end of recording; length 81952 bytes).

dir_info

MARK 5A COMMAND SET 14

disk_model – Get disk model numbers (query only) [command list]
Query syntax: disk_model? ;
Query response: !disk_model ? <return code> : <disk model#> : <disk model#> : ……;

Purpose: Returns a list of model numbers currently mounted disks.

Monitor-only parameters:
Parameter Type Values Comments

<disk model#> literal
ASCII

 Returned in order of drive number (0=0M, 1=0S, 2=1M, 3=1S,….,14=7M, 15=7S);
a blank field is returned for an empty slot.

disk_m
odel

disk_m
odel

MARK 5A COMMAND SET 15

disk_serial – Get disk serial numbers (query only) [command list]
Query syntax: disk_serial? ;
Query response: !disk_serial ? <return code> : <disk serial#> : <disk seriall#> : ……;;

Purpose: Returns a list of serial numbers of currently mounted disks.

Monitor-only parameters:
Parameter Type Values Comments

<disk serial#> literal
ASCII

 Returned in order of drive number (0=0M, 1=0S, 2=1M, 3=1S,….,14=7M, 15=7S);
A blank field is returned for an empty slot.

disk_serial
disk_serial

MARK 5A COMMAND SET 16

disk_size – Get disk sizes (query only) [command list]
Query syntax: disk_size? ;
Query response: !disk_size ? <return code> : <disk size> : <disk size> : ……;

Purpose: Returns a list capacities of currently mounted disks.

Monitor-only parameters:
Parameter Type Values Comments

<disk size> int bytes Returned in order of drive number (0=0M, 1=0S, 2=1M, 3=1S,….,14=7M, 15=7S);
A blank field is returned for an empty slot.

disk_size
disk_size

MARK 5A COMMAND SET 17

disk2file – Transfer data from Mark 5 to file [command list]
Command syntax: disk2file = <dest filename> : [<start byte#>] : [<end byte#>] : <option> ;
Command response: !disk2file = <return code> ;

Query syntax: disk2file? ;
Query response: !disk2file ? <return code> : <status> : <dest filename> : <start byte#> : <current byte#> : <end byte#> :

<option> ;

Purpose: Initiates a data transfer from the Mark 5 data disk to an ordinary file.

Settable parameters:
Parameter Type Allowed values Default Comments

<dest filename> literal
ASCII

no spaces
allowed

See
Comments

Default is name of scan in directory.
Filename must include path if path is not default.

<start byte#> int | null See
Comments

Absolute byte#; if null, defaults to <start_play> position as set and/or reported by scan_set

<end byte#> int | null See
Comments>

Absolute end byte#; if preceded by ‘+’, increment from <start byte#> by specified value;
if null, defaults to <end play> position as set and/or reported by scan_set.

<option> char w | a a w – create file if necessary, or erase (truncate at 0) existing file.
a – create file if necessary, or append to existing file (cf., fopen()).

Monitor-only parameters:
Parameter Type Values Comments

<status> char active | inactive Current status of transfer

<start byte#> int

<current byte#> int Current byte number being transferred

<end byte#> int

<option> char

disk2file
disk2fileMARK 5A COMMAND SET 18

disk2net

disk2net – Transfer data from Mark 5 to network [command list]
Command syntax: disk2net = <control> : <target hostname> : [<start byte#>] : [<end byte#>] ;
Command response: !disk2net = <return code>;

Query syntax: disk2net? ;
Query response: !disk2net ? <return code> : <status> : <start byte#> : <current byte#> : <end byte#> ;

Purpose: Initiates a data transfer from Mark 5 data disks to a remote Mark 5 system.

Settable parameters:
Parameter Type Allowed values Default Comments

<control> char connect |
on |

disconnect

 ‘connect’ – connect to socket on receiving Mark 5 system
‘on’ – start data transfer
’disconnect’ – disconnect socket
See Notes.

<target hostname> char Required only on if <control>=‘connect’; omit this parameter after connection is made.

<start byte#> int | null See
Comments

Absolute byte#; if null, defaults to <start_play> position as set and/or reported by scan_set

<end byte#> int | null See
Comments>

Absolute end byte#; if preceded by ‘+’, increment from <start byte#> by specified value;
if null, defaults to <end play> position as set and/or reported by scan_set.

Monitor-only parameters:
Parameter Type Values Comments

<status> char waiting | active | inactive Current status of transfer

<start byte#> int

<current byte#> int Current byte number being transferred

<end byte#> int

Notes:
1. To set up connection: First, issue ‘open’ to the receiving system (‘net2disk=open’ or ‘net2out=open’ to Mark 5, or Net2file as standalone

program; then issue ‘connect’ to the sending system (‘in2net=connect:..’ or ‘disk2net=connect:…’ to Mark 5).

disk2net

2. To start data transfer: Issue ‘on’ to sending system (‘in2net=on’ or ‘disk2net=on’ to Mark 5). A ‘disk2net’ transfer will stop automatically
after the specified number of bytes are sent.

3. To stop data transfer: Issue ‘off’ to the sending system (‘in2net=off’ to Mark 5). After each transfer has been stopped or completed, another
transfer may be initiated (see Note 2).

4. To close connection: First, issue ‘disconnect’ to the sender (‘in2net=disconnect’ or disk2net=disconnect’ to Mark5’). A ‘disk2net=disconnect’
command issued before the specified number of bytes are transferred will abort the transfer and close the connection. Then, ‘close’ the
receiver (‘net2disk=close’ or ‘net2out=close’ to Mark 5; Net2file ends). Net2file ends automatically on a ‘disconnect’. After a ‘net2disk’
transfer, the data on disk are not ready for use until after a ‘net2disk=close’ command has been issued.

MARK 5A COMMAND SET 19

disk2net

5. Only one data transfer activity may be active at any given time. That is, among ‘record=on’, ‘play=on’, ‘in2net=..’, ‘disk2net=..’,
‘net2disk=..’, ‘net2out=..’, ‘disk2file’=..’, ‘file2disk=..’, ‘data_check’ and ‘track_check’ ‘scan_check’, only one may be active at any given
time.

disk2net

MARK 5A COMMAND SET 20

DTS_id – Get system information (query only) [command list]
Query syntax: DTS_id? ;
Query response: !DTS_id ? <return code> : <system type> : <software revision date> : <media type> :

<serial number> : <#DIM ports> : <#DOM ports> : <command set revision> :
<Input design revision> : <Output design revision> ;

Purpose: Get Mark 5 system information

Monitor-only parameters:
Parameter Type Values Comments

<system type> char mark5P | mark5A

<software revision date> time Date stamp on current version of Mark 5 software

<media type> int 1 Per VSI-S spec: 1 – magnetic disk [0 – magnetic tape; 2 – real-time (non-recording)]

<serial number> ASCII System serial number; generally is in the form ‘mark5-xx’ where xx is the system serial number

<#DIM ports> int 1 Number of DIM ports in this DTS

<#DOM ports> int 1 Number of DOM ports in this DTS

<command set revision> char Mark 5 command set revision level corresponding to this software release (e.g. ‘2.3a’)

<Input design revision> int Revision level of Input section of Mark 5A I/O board

<Output design revision> int Revision level of Output section of Mark 5A I/O board

D
T

S_id
D

T
S_id

MARK 5A COMMAND SET 21

error

error – Get error number/message (query only) [command list]
Query syntax: error? ;
Query response: !error ? <return code> : <error#> : <error message> ;

Purpose: Get error number causing bit 1 of ‘status’ query return to be set

Monitor-only parameters:
Parameter Type Values Comments

<error#> int Error number associated with ‘status’query return bit 1

<error message> literal
ASCII

 Associate error message, if any

Notes:
1. Most errors are ‘remembered’ (even if printed with debug) and printed (and cleared) by either a ‘status?’ or ‘error?’ query. Thus, errors may

be remembered even after they have been corrected..

error

MARK 5A COMMAND SET 22

file2disk – Transfer data from file to Mark 5 [command list]
Command syntax: file2disk = <source filename> : <start byte#> : <end byte#> : <scan name>;
Command response: !file2disk = <return code>;

Query syntax: file2disk? ;
Query response: !file2disk ? <return code> : <status> : <source filename> : <start byte#> : <current byte#> : <end byte#> :

<scan name> ;

Purpose: Initiate data transfer from file to Mark 5 data disks

Settable parameters:
Parameter Type Allowed values Default Comments

<source filename> literal
ASCII

no spaces allowed save.data Filename must include path if not default.

<start byte#> int 0 Absolute byte number; if unspecified, assumed to be zero

<end byte#> int 0 If =0, will copy to end of file

<scan name> literal
ASCII

max 16 chars; no
spaces allowed

<source
filename>

Scan name to be saved to scan directory

Monitor-only parameters:
Parameter Type Values Comments

<status> char active | inactive Current status of transfer

<start byte#> int

<current byte#> int Current source byte# being transferred

<end byte#> int

<scan name> literal
ASCII

file2disk
file2disk

MARK 5A COMMAND SET 23

get_stats

get_stats – Get disk performance statistics (query only) [command list]
Query syntax: get_stats? ;
Query response: !get_stats ? <return code> : < drive number> : <bin 0 count> : <bin 1 count> :….: <bin 7 count> :

<replaced-block count> ;

Purpose: Get detailed performance statistics on individual Mark 5 data disks

Monitor-only parameters:
Parameter Type Values Comments

<drive number> int 0=0M, 1=0S, 2=1M, 3=1S,….,14=7M, 15=7S

<bin 0 count> int Number of drive transactions falling in its bin 0 (see ‘start_stats’ command for explanation)

<bin 1 count> int Number of drive transactions falling in its bin 1

<bin 2 count> int Number of drive transactions falling in its bin 2

<bin 3 count> int Number of drive transactions falling in its bin 3

<bin 4 count> int Number of drive transactions falling in its bin 4

<bin 5 count> int Number of drive transactions falling in its bin 5

<bin 6 count> int Number of drive transactions falling in its bin 6

<bin 7 count> int Number of drive transactions falling in its bin 7

<replaced-block count> int Number of 65KB (actually 0xFFF8 bytes) data blocks unavailable on playback from this drive; these blocks
have been replaced with fill pattern with even parity. See ‘replaced_blks?’ query for more information.

Notes:
1. Each subsequent ‘get_stats’ query returns current performance statistics for the next mounted drive; recycles through mounted drives. Bin

counts are not cleared. See details in Notes on ‘start_stats’ command.
2. The ‘get_stats’ query may not be issued during active recording or playback.
3. Drive statistics and replaced-block counts are cleared and re-started whenever a new disk module is mounted or a ‘start_stats’ command is

issued.

get_stats

MARK 5A COMMAND SET 24

in2net

in2net – Transfer data directly from Mark 5 input to network [command list]
Command syntax: in2net = <control> : <remote hostname> ;
Command response: !in2net = <return code> ;

Query syntax: in2net? ;
Query response: !in2net ? <return code> : <status> : <#bytes received> : <#bytes in buffer> ;

Purpose: Control direct data transfer from Mark 5 input to network; bypass disks

Settable parameters:
Parameter Type Allowed values Default Comments

<control> char connect |
on | off |

disconnect

 ‘connect’ – connect to socket on receiving Mark 5 system
‘on’ – start data transfer
’off’ – end data transfer
’disconnect’ – disconnect socket
See Notes with ‘disk2net’

<remote hostname> char Required only first ‘connect’; optional thereafter

Monitor-only parameters:
Parameter Type Values Comments

<status> char inactive | waiting | sending

<#bytes received> int #bytes received at the Input since ‘connect’

<#bytes in buffer> int #bytes remaining in buffer, waiting to be sent

Notes:
 1. Important: Due to current software problem, a scratch disk is required in Bank A for in2net operation; will be fixed in future update.

2. See Notes with ‘disk2net’ command for usage rules and restrictions.
3. If the data rate is too fast for the network to handle, the FIFO will eventually overflow; this will be reported by either a ‘status?’ query or an

‘in2net?’ query with an error message.
4. After ‘in2net=off’, but before ‘in2net=disconnect’, <#bytes received> shows the approximate total #bytes transferred from the input source;

the #bytes currently sent through out through the network is ~<#bytes received> minus <#bytes in buffer>. As <#bytes in buffer> drains to
zero (as remaining data is sent out over the network), <#bytes received> becomes somewhat more precise.

in2net

5. If ‘in2net=disconnect’ is issued while <#bytes in buffer> is >0, data will be lost.

MARK 5A COMMAND SET 25

m
ode

mode – Set data recording/playback mode [command list]
Command syntax: mode = <data mode> : <data submode> : [<output data mode> : <output submode>] ;
Command response: !mode = <return code> ;

Query syntax: mode? ;
Query response: !mode ? <return code> : <data mode> : <data submode> : <output mode> : <output submode> :

<sync status> : <#sync attempts> ;

Purpose: Set the recording and playback mode of the Mark 5 I/O card.

Settable parameters:
Parameter Type Allowed values Default Comments

<data mode> char mark4 |
vlba

st | tvg

st ‘mark4’ or ‘vlba’: strips and restores parity bits.
’st’ (‘straight-through’) mode records 32 input ‘tracks’ directly
’tvg’ – takes data from internal TVG – see Note 8.
A null field is special case for correlator. See Note 5.

<data submode> char 8 | 16 | 32 | 64 |
mark4 | vlba

See Note 2 8,16,32,64 relevant only for ‘mark4’ or ‘vlba’ mode and corresponds to number of tracks.
’mark4’ and ‘vlba’ relevant only for ‘st’ mode.
Not relevant when <data mode> is ‘tvg’.
A null field is special case for correlator. See Note 5.

<output mode> char mark4 |
vlba |

st

<data mode> Optional: For correlator or diagnostic use only:
Forces the Output Section of the Mark 5A I/O board into specified mode and submode independently
of the Input Section – see Note 5.

<output submode> int 8 | 16 | 32 | 64 |
mark4 | vlba

<data submode> Optional: For correlator or diagnostic use only – see Note 5.

Monitor-only parameters:
Parameter Type Values Comments

<sync status> char s | - ‘s’ indicates Output Section of I/O board is sync’ed; ‘-‘ indicates not sync’ed. See Note 9

<#sync attempts> int Number of sync attempts by output section. Relevant only for ‘mark4’ and ‘vlba’ modes only. See Note 10.

Notes:

m
ode

1. The ‘mode=’ command sets both the input and output modes to be the same unless overridden by <output data mode> and <output submode>
parameters.

2. Power-on default <data mode>:<data submode> is ‘st:mark4’. For <data mode> of ‘st’, default <data submode> is ‘mark4; for <data mode>
of ‘mark4’ or ‘vlba’, default <data submode> is ‘32’.

3. In ‘mark4’ or ‘vlba’ mode, the Mark 5A strips parity on record and restores it on playback to save storage space. If the number of tracks is 8,
16 or 64, the Mark 5 I/O does the necessary multiplexing/demultiplexing to always fully utilize all FPDP 32 bit streams driving the disk array.
In ‘st’ (‘straight-through’) mode, the input data are recorded and played back with no processing.

MARK 5A COMMAND SET 26

ode

m
ode

4. In ‘mark4:xx’ mode, the station ID (set by jumpers in the Mark 4 DAS rack) must be an even number. Attempting to record in ‘mark4’
mode with an odd station ID will result in an error. This is due to the fact that, with parity stripped, an odd station ID considerably
complicates the job of properly recovering synchronization during playback, and is therefore not allowed.

5. At a correlator, where there is normally nothing connected to the Mark 5A input, it is suggested that the desired playback mode be specified in
<output mode> and <output submode> and that <data mode> and <data submode> both be null fields. This will cause the input section of the
I/O board to be set to default (‘st:mark4’) mode and prevents spurious error messages from appearing regarding the input station ID.

6. The only reason to distinguish between ‘st:mark4’ and ‘st:vlba’ modes is to allow the ‘play_rate’ command’ to properly set the internal clock
generator for a specified data rate; the setting is slightly different for the Mark4 and VLBA cases.

7. The tracks expected from a Mark4 or VLBA formatter in the various modes are as follows:
mode:submode Recorded formatter track#’s FPDP bit streams

‘mark4:8’ or ‘vlba:8’ - 8 tks 2-17 even (headstack 1) Trk 2 to FPDP streams 0,8,16,24; trk 4 to 1,9,17,25; etc.
‘mark4:16’ or ‘vlba:16’ - 16 tks 2-33 even (headstack 1) Trk 2 to FPDP streams 0,16; trk 4 to 1,17; etc.
‘mark4:32’ or ‘vlba:32’ - 32 tks 2-33 all (headstack 1) Correspond to FPDP bit streams 0-31, respectively
‘mark4:64’ or ‘vlba:64’ - 64 tks 2-33 (headstacks 1 and 2) Trks 2 from both hdstks mux’ed to FPDP bit stream 0, etc.

‘st’ (any submode) 2-33 all (headstack 1) Correspond to FPDP bit streams 0-31, respectively; only mode for Mark 5P
8. In all modes except ‘tvg’ mode, the data clock is provided by the external data source. In ‘tvg’ mode, the clock-rate is set by ‘play_rate’

command.
9. The ‘sync status’ parameter is relevant only in output mode ‘mark4’ or ‘vlba’ where parity must be restored. If ‘sync’ed’, the I/O board has

properly synchronized to the data frames and is properly de-multiplexing and restoring parity.
10. The ‘# of sync attempts’ returned value in the ‘mode=’ command counts the number of sync attempts the Mark 5A I/O board output section

had to make before parity-stripped data (‘mark4’ or ‘vlba’) was re-sync’ed, as necessary for parity re-insertion. A large number indicates a
problem, perhaps in the output clock or the data itself. The counter is reset to zero on a subsequent ‘mode=’ command.

11. If in ‘tvg’ mode, TVG is operated at clock-rate set by ‘play_rate’ command.

m
ode

MARK 5A COMMAND SET 27

net2disk

net2disk – Transfer data from network to disks [command list]
Command syntax: net2disk = <control> : <scan name>;
Command response: !net2disk = <return code> ;

Query syntax: net2disk? ;
Query response: !net2disk ? <return code> : <status> : <scan name> ;

Purpose: Enable data transfer from network to local disks

Settable parameters:
Parameter Type Allowed values Default Comments

<control> char open | close ‘open’ or ‘close’ socket

<scan name> literal
ASCII

 Optional scan name to be assigned to this data; defaults to previously specified name or, if none, to ‘net2disk’

Monitor-only parameters:
Parameter Type Values Comments

<status> char active | inactive | waiting Current status of transfer

<scan name> char Returned only if <status> is ‘active’ or ‘waiting’

Notes:
1. See Notes with ‘disk2net’ command for usage rules and restrictions.

net2disk

MARK 5A COMMAND SET 28

net2out

net2out – Transfer data directly from network to Mark 5 output [command list]
Command syntax: net2out = <control> ;
Command response: !net2out = <return code> ;

Query syntax: net2out? ;
Query response: !net2out ? <return code> <status>;

Purpose: Enable data transfer from network to Mark 5 output; bypass disks

Settable parameters:
Parameter Type Allowed values Default Comments

<control> char open | close - ‘open’ or ‘close’ socket

Monitor-only parameters:
Parameter Type Values Comments

<status> char active | inactive | waiting Current status of transfer

Notes:
1. See Notes with ‘disk2net’ command for usage rules and restrictions.

net2out

MARK 5A COMMAND SET 29

OS_rev1 – Get details of operating system (query only) [command list]
Query syntax: OS_rev1? ;
Query response: !OS_rev1 ? <return code> : <OS info, part 1> ;

Purpose: Get detailed information about operating system.

Monitor-only parameters:
Parameter Type Values Comments

<OS info, part 1> literal
ASCII

 Primarily for diagnostic purposes

O
S_rev1

O
S_rev1

MARK 5A COMMAND SET 30

OS_rev2 – Get more details of operating system (query only) [command list]
Query syntax: OS_rev2? ;
Query response: !OS_rev2 ? <return code> <OS infor, part 2> ;

Purpose: Get more detailed information about operating system.

Monitor-only parameters:
Parameter Type Values Comments

<OS info, part 2> literal
ASCII

 Primarily for diagnostic purposes

O
S_rev2

O
S_rev2

MARK 5A COMMAND SET 31

play

play – Play data from from current play pointer position [command list]
Command syntax: play = <play arm/on/off> : [<start play pointer>] : [<ROT start>];
Command response: !play = <return code>;

Query syntax: play? ;
Query response: !play ? <return code> : <status> ;

Purpose: Initiate playback from disk data at current play-pointer position.

Settable parameters:
Parameter Type Allowed values Default Comments

<play arm/on/off> char arm | on | off off ‘arm’ - causes Mark5A to pre-fill buffer and prepare to play at position specified by field 2 – see Note 2.
‘on’ – causes playback to start at position specified by field 2.
 If field 2 is null, starts playback from current play pointer;
 Field 2 should be null for ‘play=on’ command following a successful ‘play=arm’.
’off’ = stops playback (if active) and unconditionally updates playback
 pointer to current play position or, if field 2 is non-null, to the
 position specified. See also Note 1.
Cannot be issued while ‘record’ is ‘on’ (error).
In all play modes, all 64 output tracks are active; if fewer than 64 tracks were recorded, the recorded track set is
duplicated to unused output tracks; see Note 2.

<start play pointer> int >=0 current
play pntr

Absolute byte number in recorded data stream; if null field, maintains current value; if <start play pointer> and
<ROT start> are both null fields, play starts at current play pointer value.

<ROT start> int #sysclks For use with Mark 4 correlator only: cause play to start after specified number of sysclk periods (counting from
beginning of year); sysclk frequency is normally 32MHz, so these can be very large numbers.

Monitor-only parameters:
Parameter Type Values Comments

<status> char arming | armed | on | off |
halted | waiting

‘arming’ – arming is in progress
’armed’ – system is armed and ready to start play
‘on’ – playback active
‘off’ – playback inactive
’halted’ – playback stopped due to reaching end-of-media or end-of-scan (when playback initiated by ‘scan_play’)
’waiting’ – delayed start of playback (special mode for correlator only)

play

Notes:

MARK 5A COMMAND SET 32

2. The ‘play=arm’ command causes the Mark 5A to prefill its buffers according to the prescribed position so that playing will start almost
instantaneously after a subsequent ‘play=on’ command is issued; this is intended primarily for use at a correlator. The amount of time need to
prefill the buffer can range from a few tens of msec to a few seconds. If all disks are good and all data have been recorded properly, the time
will be relatively short; however, if difficulties with disks or recorded data are encountered during the prefill period, up to several seconds may
be required. A ‘play?’ query should be issued to verify the system is armed for playback before issuing a ‘play=on’ command. A ‘play=on’

1. After play is turned ‘on’, the user should periodically query ‘status’ for details; if playback stops on its own accord (due to end-of-media, etc.),
this will be reflected in the response to the ‘status’ query as ‘halted’, and a ‘play’ query will show the status as well; a subsequent command to
turn play ‘off’ or ‘on’ will reset the relevant bits (9-8) in the ‘status’ response.

play
play

without a preceding ‘play=arm’ will begin play, but after an indeterminate delay. Any change in play pointer position after a ‘play=arm’ will
invalidate the arming and cause the ‘play?’ status to be returned as ‘off’.

3. During playback initiated by a ‘scan_play’ command, a ‘play?’ query will indicated the playback status.
4. When playing back in a mode with fewer than 64 tracks, groups of tracks are duplicated so that all 64 track outputs are always active, as

follows:
mode Primary playback tracks Duplicated playback tracks

‘mark4:8’ or ‘vlba:8’ - 8 tks 2-16 even (headstack 1) Duplicated to 3-17 odd, 18-32 even, 19-33 even on hdstk1; hdstk2 is duplicate of hdstk1
‘mark4:16’ or ‘vlba:16’ - 16 tks 2-33 even (headstack 1) Duplicated to 2-33 even on hdstk1; hdstk2 is duplicate of hdstk1
‘mark4:32’ or ‘vlba:32’ - 32 tks 2-33 all (headstack 1) Headstack 1 output is duplicated to Headstack 2
‘mark4:64’ or ‘vlba:64’ - 64 tks 2-33 (headstacks 1 and 2) None

‘st’ (any submode) – 32 tks 2-33 all (headstack 1) Headstack 1 output is duplicated to Headstack 2
tvg equivalent to tracks 2-33 Headstack 1 output is duplicated to Headstack 2

5. Note that record/play pointers may have values as large as ~2x1013 (~44 bits), so pointer arithmetic must be handled appropriately.
6. Playback clock rate is set by the ‘play_rate’ command
7. When playing, the playback pointer will update to show the approximate position. If the playback pointer is noted not to be incrementing, an

error flag is set in the ‘status?’ query which can be used as a first order check of proper playback.

MARK 5A COMMAND SET 33

play_rate – Set playback data rate; set tvg rate [command list]
Command syntax: play_rate = <play rate reference> : <rate> ;
Command response: !play_rate = <return code> :;

Query syntax: play_rate? ;
Query response: !play_rate ? <return code> : <track data rate> : <track clock rate> : <clockgen freq> ;

Purpose: Set the playback rate (specified as <track data rate>, <track clock rate> or <clock generator frequency>.

Settable parameters:
Parameter Type Allowed values Default Comments

<play rate reference> char data |
clock |

clockgen |
ext

clock ‘data’ – set output track data rate (not including parity) to specified value.
’clock’ – set output track clock rate (including parity) to specified value.
’clockgen’ – set clock generator chip to specified frequency; max is 40 MHz..
’ext’ – external clock select
See also Notes below.

<rate> real MHz 9 >0 – set rate to specified value; freq resolution of clock generator chip is ~20 mHz.
If in ‘tvg’ mode, sets on-board clock generator rate regardless of value of <play rate reference>; see Notes.

Monitor-only parameters:
Parameter Type Values Comments

<track data rate> real Mbps Track data rate (without parity); =0 if external clock selected

<track clock rate> real MHz Track clock rate; see Note 1 for relationship to <track data rate>

<clockgen freq> real MHz Internal clock generator frequency; see Note 1 for relationship to <track data rate>

Notes:
1. For a given operating mode, the relationships between <track data rate>, <track clock rate> and <clockgen freq> are as follows:

mode:submode <track data rate>
(Mbps)

Typical ‘standard’
values of

<track data rate>

Corresponding
<track clock rate>

(MHz)

Corresponding
<clockgen> frq

(MHz)

Total recording
data rate
(Mbps)

st:mark4 f 2 | 4 | 8 | 16 9/8*f 9/8*f 32*9/8*f
st:vlba f 2 | 4 | 8 9/8*f 9/8*f 32*9/8*f

mark4:8 f 2 | 4 | 8 | 16 9/8*f 9/8*f 8*f
mark4:16 f 2 | 4 | 8 | 16 9/8*f 9/8*f 16*f
mark4:32 f 2 | 4 | 8 | 16 9/8*f 9/8*f 32*f
mark4:64 f 2 | 4 | 8 | 16 9/8*f 2*9/8*f 64*f

vlba:8 f 2 | 4 | 8 1.008*9/8*f 1.008*9/8*f 1.008*8*f
vlba:16 f 2 | 4 | 8 1.008*9/8*f 1.008*9/8*f 1.008*16*f
vlba:32 f 2 | 4 | 8 1.008*9/8*f 1.008*9/8*f 1.008*32*f
vlba:64 f 2 | 4 | 8 1.008*9/8*f 2*1.008*9/8*f 1.008*64*f

tvg f any up to 40 f f 32*f

MARK 5A COMMAND SET 34

play_rate
play_rate

2. Upon a ‘mode’ change, the Mark 5A software automatically makes any necessary adjustments to the clock generator to meet the current <track data rate>
value (e.g. as returned by a ‘play_rate?’ query).

3. The value of the ‘play_rate’ parameters has no effect when recording data from an external source; the recording rate is strictly determined by the operating
mode and input clock frequency. However, when using the ‘rtime?’ query to determine the remaining available recording time, the ‘play_rate’ parameters
must correspond to the input data rate.

4. The maximum clock generator rate is 40 MHz, which results in corresponding maximum <track data rates> and <track clock rates> as follows:
data

mode:submode
<track data rate>

(Mbps)
<track clock rate>

(MHz)
st:mark4 35.56 40
st:vlba 35.27 40

mark4:8 35.56 40
mark4:16 35.56 40
mark4:32 35.56 40
mark4:64 17.78 20

vlba:8 35.27 40
vlba:16 35.27 40
vlba:32 35.27 40
vlba:64 17.64 20

tvg 40 40

play_rate
play_rateMARK 5A COMMAND SET 35

position – Get current record and play pointers (query only) [command list]

position

Query syntax: position? ;
Query response: !position? <record pointer> : <play pointer>;

Purpose: Get current value of record and play pointers.

Monitor-only parameters:
Parameter Type Values Comments

<record pointer> int bytes If stopped, returns position at which ‘record=on’ command will begin recording (always appends to existing);
if recording, returns current record position.

<play pointer> int bytes If stopped, returns position at which ‘playback=on’ command will begin playing;
can never be greater than current record position.

Notes:
1. Note that record/play pointers may have values as large as ~2x1013 (~44 bits), so pointer arithmetic must be handled appropriately.
2. When recording or playing, the corresponding pointer will be updated to show the approximate position. If the respective pointer is noted not

to be incrementing during recording or playing, an error flag is set in the ‘status?’ query which can be used as a first order check of proper
operation.

position

MARK 5A COMMAND SET 36

protect

protect – Set write-protection on/off for active module [command list]
Command syntax: protect = <protect on/off> ;
Command response: !protect = <return code> ;

Query syntax: protect? ;
Query response: !protect? <return code> : <protect on/off>;

Purpose: Set write-protection on/off for active disk module

Settable parameters:
Parameter Type Allowed values Default Comments

<protect on/off> char on | off -

Notes:
1. When write-protection is ‘on’, ‘record=on’, ‘net2disk=open’ and ‘file2disk=…’ commands will be rejected.
2. Command may be issued only when not recording or playing.

protect

MARK 5A COMMAND SET 37

record

record – Record data from Mark 5 input to disks [command list]
Command syntax: record = <record on/off> : <scan name> : [<source>] : [<experiment name>] ;
Command response: !record = <return code> ;

Query syntax: record? ;
Query response: !record ? <return code> : <status>: <scan name> : [<source>] : [<experiment name>] ;

Purpose: Turn recording on|off; assign scan name and experiment name.

Settable parameters:
Parameter Field Type Allowed values Default Comments

<record on/off> 1 char on | off ‘on’ automatically appends to the end of the existing recording; ‘bypass’ is active while
recording is ‘on’.
’off’ stops recording and leaves system in ‘bypass’ mode.

<scan name> 2 ASCII max 16 chars
(no spaces)

 Optional: relevant only if record is ‘on’. ‘+’ character not allowed in scan name.
No checking is done for duplicate scan names.

<source> 4 ASCII max 16 chars
(no spaces)

 Optional: relevant only if record is ‘on’.
Recorded permanently into directory.

<experiment name> 3 ASCII max 16 chars
(no spaces)

 Optional: relevant only if record is ‘on’.
Recorded permanently into directory.

Monitor-only parameters:
Parameter Type Values Comments

<status> char on | off | halted ‘halted’ indicates end-of-media was encountered while recording.

Notes:
1. The formatter output track numbers that are actually recorded in each mode are as follows (see also Mark 5 memo 11.1):

mode:submode Recorded track#’s FPDP bit streams
‘mark4:8’ or ‘vlba:8’ - 8 tks 2-16 even (headstack 1) Trk 2 to FPDP streams 0,8,16,24; trk 4 to 1,9,17,25; etc.

‘mark4:16’ or ‘vlba:16’ - 16 tks 2-33 even (headstack 1) Trk 2 to FPDP streams 0,16; trk 4 to 1,17; etc.
‘mark4:32’ or ‘vlba:32’ - 32 tks 2-33 all (headstack 1) Correspond to FPDP bit streams 0-31, respectively
‘mark4:64’ or ‘vlba:64’ - 64 tks 2-33 (headstacks 1 and 2) Trks 2 from both hdstks mux’ed to FPDP bit stream 0, etc.

‘st’ (any submode) – 32 tks 2-33 all (headstack 1) Correspond to FPDP bit streams 0-31, respectively; only mode for Mark 5P
tvg equivalent to tracks 2-33 TVG data; correspond to FPDP bit streams 0-31, respectively,

record
record

2. The recording rate is controlled by the track clock from the formatter except in ‘tvg’ mode. The on-board TVG is driven by the same clock
generator that sets the output clock rate during playback; therefore, when ‘tvg’ mode is active in record or bypass, the TVG is driven at the
clock generator frequency, which is set by the ‘play_rate’ command.

MARK 5A COMMAND SET 38

record

3. After record is turned ‘on’, the user should periodically query ‘status’ for details; if recording stops on its own accord (due to end-of-media, etc.),
this will be reflected in the response to the ‘status’ query as ‘recording stopped’, and a ‘record’ query will show the status as ‘halted’; a subsequent
command to turn record ‘off’ or ‘on’ will reset the relevant bits (5-4) in the ‘status’ response.

4. When playing, the playback pointer will update to show the approximate position. If the playback pointer is noted not to be incrementing, an error
flag is set in the ‘status?’ query which can be used as a first order check of proper playback.

record

MARK 5A COMMAND SET 39

replaced_blks

replaced_blks – Get number of replaced blocks on playback (query only) [command list]
Query syntax: replaced_blks? ;
Query response: !replaced_blks? <return code> : <disk 0> : <disk 1> : <disk 2> : <disk 3> : < disk 4> : <disk 5> :

<disk 6> : <disk 7> : <total replaced blks> ;

Purpose: Get number of replaced blocks during playback on disk-by-disk basis.

Monitor-only parameters:
Parameter Type Values Comments

<disk 0> int Number of replaced blocks on disk 0

<disk 1> int Number of replaced blocks on disk 1

<disk 2> int Number of replaced blocks on disk 2

<disk 3> int Number of replaced blocks on disk 3

<disk 4> int Number of replaced blocks on disk 4

<disk 5> int Number of replaced blocks on disk 5

<disk 6> int Number of replaced blocks on disk 6

<disk 7> int Number of replaced blocks on disk 7

<total replaced blks> int Total number of replaced blocks.

Notes:
1. If a disk is unable to provide a requested 65KB (actually 0xfff8 bytes) block of data within the allowed time limits, due to a slow or failed

drive, the Mark 5A replaces the requested data block with a data block with even parity that can be detected by as invalid by a correlator. See
‘Mark 5A User’s Manual’ for details.

2. Drive statistics and replaced-block counts are cleared and re-started whenever a new disk module is mounted or a ‘start_stats’ command is
issued.

3. If the case of a totally failed drive, the replaced-block count for that drive will be 0 since the StreamStor ceases to ask for data from that drive,
but the <total replaced blks> will be accurate. Statistics gathered from the ‘get_stats?’ query should be used to help diagnose the failed drive.

4. Replaced-block statistics are updated only after playback has ceased (i.e. replaced-block statistics are not updated during playback)?????.

replaced_blksMARK 5A COMMAND SET 40

reset reset – Reset Mark 5 unit (command only) [command list]
Command syntax: reset = <control> ;
Command response: !reset = <return code> ;

Purpose: Reset system; mount/dismount disks

Settable parameters:
Parameter Type Allowed values Default Comments

<control> char erase |
erase_last_scan

abort

 ’erase’ intiates the setting of record and play pointers to zero (i.e. beginning of media); effectively erasing media;
’erase_last_scan’ erases the last recorded scan; sets record play pointers to ??.
’abort’ aborts active disk2net, disk2file or file2disk transfers (only) – See Note 2
System is always left in ‘bypass’ mode after any reset command.
See Note 1.

Notes:
1. The former ‘reset=mount’ and ‘reset=dismount’ commands are no longer supported; the keyswitches associated with the disk modules are

used for all mount and dismount operations.
2. ‘reset=abort’ returns immediately, but there may be a delay of up to two seconds before the data transfer stops. During this delay, a ‘status?’

query will show what is happening.

reset

MARK 5A COMMAND SET 41

rtim
e

rtime – Get remaining record time on current disk set (query only) [command list]
Query syntax: rtime? ;
Query response: !rtime ? <return code> : <remaining time> : <remaining GB> : <mode> : <submode> : <track data rate> :

<total recording rate> ;

Purpose: Get remaining record time of current disk set; assumes recording will be in the mode currently set by the ‘mode’ command
and data rate set by ‘play_rate’ command.

Monitor-only parameters:
Parameter Type Values Comments

<remaining time> real seconds Approximate remaining record time for current ‘mode’ and ‘play_rate’ parameters;
Requires that ‘play_rate’ be set to current record rate – see Notes.

<remaining GB> real GB GB remaining on current disk set (1 GB = 109 bytes)

<remaining percent> real 0-100 Remaining percentage of disk space still available

<mode> char mark4 | vlba | st | tvg Mode assumed in calculation of <remaining time>. See ‘mode’ command.

<submode> char 8 | 16 | 32 | 64 | mark4 | vlba Submode assumed in calculation of <remaining time>

<track data rate> real MHz Track data rate assumed in calculation of <remaining time>; see ‘play_rate’ command

<total recording rate> real Mbps Total data rate to disks; based on assumed mode, submode and track data rate

Notes:
1. Since recording rate is controlled by an external clock (except in ‘tvg’ mode), the Mark 5A has no knowledge of the record data rate. However, if

‘play_rate’ is set to match the recording rate, the remaining recording time can be accurately estimated.
2. Each ‘rtime?’ query returns an updated estimate during recording; a somewhat more accurate estimate is obtained when recording is stopped and the effects

of any slow or bad disks can be more accurately measured.

rtim
e

MARK 5A COMMAND SET 42

scan_check

scan_check – Get scan parameters (query only) [command list]
Query syntax: scan_check? ;
Query response: !scan_check ? <return code> : <scan number> : <scan name> : <data mode> : <data submode> : <start time> :

<scan length> : <track data rate> : <#missing bytes>;

Purpose: Determine parameters of recorded scan specified by current scan pointer (e.g. value of ‘scan_set’). Please be especially
attentive to Note 1 of ‘data_check’ for the track set that must be recorded.

Monitor-only parameters:
Parameter Type Values Comments

<scan number> int Start at 1 for first recorded scan

<scan name> literal
ASCII

<data mode> char st |
mark4 | vlba |

tvg | SS

See ‘mode’ command for explanation of data modes;
’tvg’ corresponds to VSI test pattern;’ SS’ corresponds to StreamStor test pattern

<data submode> int 8 | 16 | 32 | 64 |
mark4 | vlba

‘8|16|32|64’ if <data mode> is ‘mark4’ or ‘vlba’;
’mark4|vlba’ if <data mode> is ‘st’

<start time> time Time tag at first frame header in scan. See Note 5 below.

<scan length> time Scan length in seconds

<track data rate> real Mbps Excludes parity bits; will always be 0.125, 0.25, 0.5, 1, 2, 4, 8 or 16 (Mbps)

<#missing bytes> int See Note 6 Should always be =0 for normally recorded data.
>0 indicates #bytes that have been dropped somewhere within scan
<0 indicates #bytes that have been added somewhere within scan

Notes:
1. The ‘scan_check’ query will be honored only if record and play are both off.
2. The ‘scan_check’ query does not affect the play pointer.
3. The ‘scan_check’ query essentially executes a ‘data_check’ at the beginning of a scan, followed by a ‘data_check’ at the end of the scan. This

allows information about the selected scan to be conveniently determined.
4. Regarding the ‘data time’ value returned by the ‘data_check?’, ‘scan_check?’ and ‘track_check?’ queries: The Mark 4 time-tags contain the

day-of-year (DOY) but only the final digit of the year; the VLBA time-tags contain, instead, the last 3 digits of the Julian day number
(misnamed MJD). To show the year and DOY in the returned values of ‘data time’ requires some assumptions. For Mark 4, we assume the
most recent year consistent with the unit-year and DOY written in the Mark 4 time-tag; this algorithm reports the proper year provided the
data were taken no more than 10 years ago. For VLBA, we assume the most recent Julian Day Number (JDN) consistent with the last 3 digits
available in the VLBA time-tag; this algorithm reports the proper year provided the data were taken no more than 1000 days ago.

scan_check

5. The <#missing bytes> parameter is calculated as the difference the expected number of bytes between two samples of recorded data based on
embedded time tags and the actual observed number of bytes between the same time tags. The reported number is the total number of bytes
missing (or added) between the two sample points.

MARK 5A COMMAND SET 43

scan_check

7. When the <data mode> is determined to be ‘tvg’ or ‘SS’, three integer diagnostic parameters are returned following <data mode>. A buffer of
data is read (typically ~1MB) from the disks at the present play pointer position, which is analyzed. The following information is returned:

a. Position of first 32-bit word (starting from zero) in buffer containing first valid word in the ‘tvg’ or ‘SS’ sequence.
b. Position of first 32-bit word which is not in the proper order of the ‘tvg’ or ‘SS’ sequence.
c. Size of block read.

For a properly operating system, the first number will be 0 and the 2nd and 3rd numbers will have the same values.

scan_checkMARK 5A COMMAND SET 44

scan_dir
scan_play

scan_play – Play scan specified by current value of scan_set parameters [command list]
Command syntax: scan_play = <arm/on/off>;
Command response: !scan_play = <return code> ;

Query syntax: scan_play? ;
Query response: !scan_play ? <return code> : <status>;

Purpose: Play scan specified by current value of scan_set parameters

Settable parameters:
Parameter Type Allowed values Default Comments

<arm/on/off> char arm | on | off on ‘arm’ - causes Mark5A to pre-fill buffer and prepare to play at current <start_play> position – see Note 2.
’on’ – starts playing at current <start play> position.
’off’ – stops playing at current position; does not affect <start play> position

Monitor-only parameters:
Parameter Type Values Comments

<status> char arming | armed | active |
inactive | halted

‘arming’ – arming is in progress
’armed’ – system is armed and ready to play
’active’ –playback is active
’inactive’ – playback is inactive
‘halted’ indicates end-of-scan encountered; requires ‘play-off’ command to update play pointer. See Notes.

Notes:
1. ‘scan_play’ starts playback at the <start_play> position as set and/or reported by ‘scan_set’ and ends at the corresponding <end_play>

position.
2. The ‘scan_play=arm’ command causes the Mark 5A to prefill its buffers so that the playing will start almost instantaneously after a subsequent

‘scan_play=on’ command is issued and is intended primarily for use at a correlator. The amount of time need to prefill the buffer can range
from a few tens of msec to a few seconds. If all disks are good and all data have been recorded properly, the time will be relatively short;
however, if difficulties with disks or recorded data are encountered during the prefill period, up to several seconds may be required. A
‘scan_play?’ query should be issued to verify the system is armed for playback before issuing a ‘scan_play=on’ command. A ‘scan_play=on’
without a preceding ‘scan_play=arm’ will begin play, but after an indeterminate delay. Any change in the <start_play> position after ‘arming’
will cause the buffer prefill to be invalidated and the status to be returned to ‘inactive’.

scan_play

3. At end of play, a ‘play?’ query will return ‘halted’. May also be stopped by ‘play=off’ command; play pointer will be updated to stop
position. Scan pointer is not affected.

4. During playback initiated by a ‘scan_play’ command, a ‘play?’ query will indicated the playback status.

MARK 5A COMMAND SET 45

scan_set

scan_set – Set scan playback parameters [command list]
Command syntax: scan_set = <scan name|scan number> : [<start play>] : [<end play>] ;
Command response: !scan_set = <return code> ;

Query syntax: scan_set? ;
Query response: !scan_set? <return code> : <scan number> : <scan name> : <start play byte#> : <end play byte#> ;

Purpose: Set scan playback parameters for scan_check, scan_play, disk2file and disk2net commands.

Settable parameters:
Parameter Type Allowed values Default Comments

<scan name|number> int or
ASCII

scan number |
scan name |

’inc’

last recorded
scan

First attempts to interpret as scan number (first scan is number 1); if not numeric or no match, attempts to match
all or part of existing scan name, case insensitive (see Note 1).
If ‘inc’, increments to next scan; cycles back to first scan at end.
If null field, defaults to last fully recorded scan (e.g. if recording is in progress, defaults to previous scan).

<start play> char |
time |

int

s | c | e | s+ |
<time> |

+<time> |
-<time> |

+<bytes> |
-<bytes>

s s|c|e|s+: Set start_play position to ‘start’, ‘center’, ‘end’ (actually ~1MB before end) of scan, or specified <time>
within scan; this is convenient if you want to do a subsequent ‘data_check’ or ‘track_check’ at a prescribed
position. ’s+’ sets play pointer to 65536 bytes past the start of the scan.
<time>: time within scan: see Notes 2 & 3
+<time>: offset time from beginning of scan (i.e. ‘+30s’ will start 30 seconds from beginning of scan)
-<time>: offset time from end of scan (i.e. ‘-30s’ will start 30 seconds before end of scan)
+<bytes>: offset number of bytes from beginning of scan.
-<bytes>: offset number of bytes from end of scan

<end play> time |
int

<time> |
+<time> |
-<time> |

+<bytes> |
-<bytes>

end-of scan <time>: Time at which to end playback; see Notes 2 & 3. If preceded by ‘+’, indicates duration of data (in record-
clock time) from <start_play> time.
+<time>: offset time from <start play> position.
-<time>: offset time from end-of-scan
+<bytes>: offset bytes from <start play> position
-<bytes>: offset bytes from end of scan

Monitor-only parameters:
Parameter Type Values Comments

<scan number> int Returns current ‘scan pointer’, which relates only to the ‘scan_play’ command and to the ‘scan_check” and
‘scan_dir’ queries.
Followed by ‘+’ if scan automatically switched to another disk module (not yet implemented).
Prefaced by ‘+’ if scan is continuation from another disk module (not yet implemented).

<scan name> ASCII Scan name assigned in ‘record=on’ command, if any.

<start play byte#> int bytes Absolute byte position to start playback.

<end play byte#> int bytes Absolute byte position to stop playback. scan_set

MARK 5A COMMAND SET 46

scan_set

Notes:
1. The ‘scan_set’ command can use ‘abbreviated’ scan names: If the first parameter is all numeric, scan_set will first try to interpret

this as a scan number. If it is not numeric or the scan number does not exist, scan_set will find the first scan whose scan name,
experiment name or source name contains the string in the first parameter (case insensitive).

2. When ‘record=off’ is issued or end-of-media (following a ‘record=on’) is encountered, the default scan playback parameters are
set to playback the entire just-recorded scan.

3. If the <start play> or <end play> parameter is a <time> value, the specified time must be specified with sufficient significance to
resolve any ambiguity. For example, ‘30s’ would set the play pointer to start at the first ‘30s’ mark in the scan (regardless of the
value of the minute); similarly, ‘12m30s’ would have a one-hour ambiguity. If the specified times are outside the bounds of the
recorded scan, an error code ‘6’ will be returned.

scan_setMARK 5A COMMAND SET 47

skip

skip – Skip forward/backwards specified # of bytes while playing [command list]
Command syntax: skip = <requested skip> ;
Command response: !skip = <return code> ;

Query syntax: skip? ;
Query response: !skip ? <return code> : <actual skip> ;
Purpose: Skip forward/backwards specified # of bytes while playing

Settable parameters:
Parameter Type Allowed values Default Comments

<requested skip> int multiple of 8 >0 – skip forward; <0 – skip backward; must be multiple of 8 bytes
Used to synchronize data to correlator – see Notes.
If not playing, increments start-playback position.

Monitor-only parameters:
Parameter Type Values Comments

<actual skip> int Actual value of skip executed. See Notes.

Notes:
1. During playback, the ‘skip’ command will synchronously skip over a prescribed amount of data, either positive or negative, and is intended for

synchronizing the data during playback at the correlator. A skip of any size may be requested, however the actual skip executed is limited to
be within the data currently within the SS on-board 512MB buffer; the size of the actual executed skip can be determined with a subsequent
‘skip?’ query. Subsequent ‘skip’ commands can then be used to make up the remainder of the total desired skip, if necessary. During normal
playback, a maximum forward or backward skip of ~256MB is possible (except immediately after starting playback and possibly after a
preceding large skip), which corresponds to ~2 seconds of data at 1 Gbps and longer at slower playback rates. Normally, it should be possible
to control the position and timing of the start of playback so that skips larger than the available buffer size are not necessary.

skip

MARK 5A COMMAND SET 48

SS_rev1 – Get StreamStor firmware/software revision levels, part 1 (query only) [command list]
Query syntax: SS_rev1? ;
Query response: !SS_rev1 ? <return code> : <SS info 1> ;

Purpose: Get information on StreamStor firmware/software revision levels.

Monitor-only parameters:
Parameter Type Values Comments

<SS info 1> literal
ASCII

 Primarily for diagnostic purposes.

SS_rev1
SS_rev1

MARK 5A COMMAND SET 49

SS_rev2 – Get Streamstor firmware/software revision levels, part 2 (query only) [command list]
Query syntax: SS_rev2? ;
Query response: !SS-rev2 ? <return code> : <SS info 2> ;

Purpose: Get more information on StreamStor firmware/software revision levels.

Monitor-only parameters:
Parameter Type Values Comments

<SS info 2> literal
ASCII

- Primarily for diagnostic purposes.

SS_rev2
SS_rev2

MARK 5A COMMAND SET 50

start_stats

start_stats – Start gathering disk-performance statistics [command list]
Command syntax: start_stats = [<bin 0 bound> : <bin 1 bound> :….: <bin 7 bound>] ;
Command response: !start_stats = <return code> ;

Query syntax: start_stats? ;
Query response: !start_stats ? <return code> : <bin 0 bound> : <bin 1 bound> :….: <bin 7 bound> ;

Purpose: Start gather disk performance statistics

Settable parameters:
Parameter Type Allowed values Default Comments

<bin n bound> time 0.001125s
0.00225s
0.0045s
0.009s
0.018s
0.036s
0.072s

Clears and restarts gathering of drive statistics. See Notes.
Seven optional values define 8 bins corresponding to drive-response (i.e. transaction completion) times; values
must increase monotonically; a separate set of bins is maintained for each mounted drive. The count in a bin is
incremented according to the following rules, where ‘t’ is drive-response time of a single read or write transaction:
 Bin 0: t<t0
 Bin 1: t0<t<t1
 .
 Bin 6: t5<t<t6
 Bin 7: t>t6

Notes:
1. Drive statistics and replaced-block counts are cleared and re-started whenever a new disk module is mounted or a ‘start_stats’ command is

issued. Read drive statistics with ‘get_stats’ query. Bin values are common for all drives. Each count within a bin represents a transfer of
65528 bytes (216-8).

2. The ‘start_stats’ command may not be issued during active recording or playback.

start_statsMARK 5A COMMAND SET 51

status – Get system status (query only) [command list]
Query syntax: status? ;
Query response: !status ? <return code> : <status word> ;

Purpose: Get general system status

Monitor-only parameters:
Parameter Type Values Comments

<status word> hex - Bit 0 – (0x0001) system ‘ready’
Bit 1 – (0x0002) error message(s) pending; (message may be appended); messages may be queued;
 error is cleared by this command. See also ‘error?’ query
Bit 2 – not used
Bit 3 – (0x0008) one or more ‘delayed-completion’ commands are pending. Also set whenever any data-
 transfer activity, such as recording, playing, or transfer to or from disk or net, is active or waiting.

Bit 4 – (0x0010) one or more ‘delayed-completion’ queries are pending
Bit 5 – (0x0020) not used
Bit 6 - (0x0040) record ‘on’
Bit 7 - (0x0080) media full (recording halted)

Bit 8 - (0x0100) playback ‘on’
Bit 9 - (0x0200) end-of-scan or end-of-media (playback halted)
Bit 10 – (0x0400) recording can’t keep up; some lost data
Bit 11 – not used

Bit 12 – (0x1000) disk2file active
Bit 13 – (0x2000) file2disk active
Bit 14 – (0x4000) disk2net active
Bit 15 – (0x8000) net2disk active or waiting

Bit 16 – (0x10000) in2net sending (on)
Bit 17 – (0x20000) net2out active or waiting
Bit 19-18 – not used

Note: Bits 20-27 are active only when in bank mode and no data transfers are in progress.
Bit 20 – (0x100000) Bank A selected
Bit 21 – (0x200000) Bank A ready
Bit 22 – (0x400000) Bank A media full
Bit 23 – (0x800000) Bank A write protected

Bit 24 – (0x1000000) Bank B selected
Bit 25 – (0x2000000) Bank B ready
Bit 26 – (0x4000000) Bank B media full
Bit 27 – (0x8000000) Bank B write protected

MARK 5A COMMAND SET 52

status
status

D
T

S_id
error
task_ID

task_ID – Set task ID (primarily for correlator use) [command list]
Command syntax: task_ID = <task_ID> ;
Command response: !task_ID = <return code> ;

Query syntax: task_ID? ;
Query response: !task_ID ? <return code> : <task_ID> ;

Purpose: Set task ID (primarily for correlator use)

Settable parameters:
Parameter Type Allowed values Default Comments

<task_ID> int For use with Mark 4 correlator only: Causes Mark 5 system to listen to only ROT broadcasts with the
corresponding ‘task ID’. See Notes.

Notes:
1. The ‘task_ID’ command is used in conjunction with the ‘play’ command for accurate synchronization of Mark 5 playback-start with correlator ROT clock.

task_ID

MARK 5A COMMAND SET 53

track_check

track_check – Check data on selected track (query only) [command list]
Query syntax: track_check? ;
Query response: !track_check ? <return code> : <data mode> : <data submode> : <data time> : <byte offset> :

<track frame period> : <track data rate> : <decoded track#> : <#missing bytes>;

Purpose: Check recorded track which, on playback, will output data to track pointed to by current ‘track_set’ value.

Monitor-only parameters:
Parameter Type Values Comments

<data mode> char st |
mark4 | vlba |

tvg | SS

See ‘mode’ command for explanation of data modes;
’tvg’ corresponds to VSI test pattern;’ SS’ corresponds to StreamStor test pattern
’?’ indicates unknown format.

<data submode> int 8 | 16 | 32 | 64 |
mark4 | vlba

‘8|16|32|64’ if <data mode> is ‘mark4’ or ‘vlba’;
’mark4|vlba’ if <data mode> is ‘st’

<data time> time Time tag from next ‘track’ frame header beyond current play pointer. See Note 5 of ‘scan_check’.

<byte offset> int bytes- Byte offset from current play pointer to beginning of next ‘track’ frame header of target track

<track frame period> time Time tag difference between adjacent track frames; allows original track data rate to be determined.

<track data rate> real MHz Track data rate of source data from formatter.

<decoded track#> int 2-33, 102-133 Track# decoded from auxiliary data field of target track; followed by ‘D’ if track is a ‘duplicated’ track;
followed by‘?’ if not decodable or unallowed track#. See Note 3.

<#missing bytes> int bytes Number of missing bytes between last and current ‘track_check’;
Should be =0 if immediately previous ‘track_check’ was within same scan
Meaningless if immediately previous ‘track_check’ was in a different scan.
See Note 4. See also Note 6 in ‘scan_check’

Notes:
1. The ‘track_check’ query will be honored only if record and play are both off.
2. The ‘track_check’ query checks data beginning at the current position of the play pointer; the play pointer is not affected.
3. The ‘track_check’ query targets the first of the two selected ‘track_set’ tracks and executes the following actions:

a. Determines the data mode/submode based on the format of the disk data.
b. If the target track is a track which is actually recorded in this mode/submode (see ‘mode’ command Notes), several frames of data are

collected from the expected position of this track in the disk data. If the target track is not recorded, the data are collected from the
position of the recorded track number which, during playback, is duplicated onto the target track (see ‘play’ command Notes) in this
mode/submode.

track_check

c. A ‘track frame header’ is extracted from the collected data and the embedded <data time> and <track#> information is decoded. Note that
the extracted track# will match the target track only in the case in which the target track was actually recorded. A space is returned in the
<track#> field if the data are in Mark 3 track format (either from a Mark 3 formatter or a VLBA formatter emulating a Mark 3 formatter)
since track# is not included in Mark 3 track-frame-header information.

4. Further analysis is done to determine the <track frame period> and <#missing bytes>. A ‘blank’ is returned in the <#missing bytes> field if
the # of missing bytes cannot be calculated.

MARK 5A COMMAND SET 54

track_check

5. Regarding the ‘data time’ value returned by the ‘data_check?’, ‘scan_check?’ and ‘track_check?’ queries: The Mark 4 time-tags contain the
day-of-year (DOY) but only the final digit of the year; the VLBA time-tags contain, instead, the last 3 digits of the Julian day number
(misnamed MJD). To show the year and DOY in the returned values of ‘data time’ requires some assumptions. For Mark 4, we assume the
most recent year consistent with the unit-year and DOY written in the Mark 4 time-tag; this algorithm reports the proper year provided the
data were taken no more than 10 years ago. For VLBA, we assume the most recent Julian Day Number (JDN) consistent with the last 3 digits
available in the VLBA time-tag; this algorithm reports the proper year provided the data were taken no more than 1000 days ago.

track_check

MARK 5A COMMAND SET 55

track_set

track_set – Select tracks for monitoring with DQA or ‘track_check’ [command list]
Command syntax: track_set = <track A> : <track B> ;
Command response: !track_set = <return code> ;

Query syntax: track_set? ;
Query response: !track_set ? <return code> : <track A> : <track B> ;

Purpose: The ‘track_set’ command serves a two-fold purpose: 1) to select two tracks to be output to the Mark 4 decoder or VLBA
DQA and 2) to select the track examined by the ‘track_check’ query.

Settable parameters:
Parameter Type Allowed values Default Comments

<track A> int/char 2-33 (hdstk 1)
102-133 (hdstk 2) |

inc

15 Track selected to be sent to DQA/decoder channel A; track to be analyzed by ‘track_check’.
Default is headstack 1; add 100 for headstack 2, if present.
Track numbers follow the ‘VLBA’ convention; i.e. 2-33 for headstack 1, 102-133 for headstack 2.
’inc’ increments current value – see Note 3.
If null field, current value is maintained.

<track B> int/char 2-33 (hdstk 1)
102-133 (hdstk 2) |

inc

16 Track selected to be sent to DQA/decoder channel B.
’inc’ increments current value – see Note 3.
If null field, current value is maintained.

Notes:
1. Note that tracks are duplicated according to the table in the Notes with the ‘play’ command. Any of the ‘primary’ or ‘duplicated’ tracks may

be selected to go to the DQA/decoder.
2. <track A> is also used as the track to be examined by the ‘track_check’ query and should correspond to a track that is actually recorded in the

selected data mode (see table with ‘record’ command).
3. The ‘inc’ value increments the current selected track value by one; cycles through all 32 tracks on each headstack, then begins again. This is a

convenient method of cycling through all tracks during system testing.

track_set

MARK 5A COMMAND SET 56

V
SN

VSN – Write module VSN to permanent area [command list]
Command syntax: VSN = <VSN> ;
Command response: !VSN = <return code> ;

Query syntax: VSN? ;
Query response: !VSN ? <return code> : <VSN> [: <disk#> : <original S/N> : <new S/N> : ‘Disk serial-number mismatch’] ;

Purpose: Write module VSN (volume serial number) to permanent area

Settable parameters:
Parameter Type Allowed values Default Comments

VSN char Permanent ‘extended-VSN’ analogous to tape VSN, which will survive ‘reset=erase’ command;
min 8 chars, max 255 chars (typical VSN might be ‘MPI-0153/960/1024’)

Monitor-only parameters:
Parameter Type Allowed values Comments

<disk#> int 0-7 First disk# in module in which there is a serial-number discrepancy

<original S/N> char Serial number of disk in position <disk#> when VSN was written

<new S/N> char Serial number of disk now in position <disk#>

‘Disk serial-number
mismatch’

char Warning message

Notes:
1. The ‘VSN=..’ command is normally issued only when the module is first assembled or when the disk configuration is changed. The serial

numbers of the resident disks are noted.
2. The ‘VSN?’ query compares the serial numbers of the original disks to the serial numbers of the currently-resident disks and reports only the

first discrepancy. Issuing a ‘VSN=…’ command or a ‘reset=erase’ command will update the disk-serial# list to the currently-resident disks.

V
SN

MARK 5A COMMAND SET 57

Mark 5 Linux Configuration Instructions
MIT Haystack Observatory

14 July 2003

1. Introduction

This memo contains step-by-step instructions for local setup of a Mark 5 system under Red Hat
Linux. The following areas are addressed:

1. Network configuration
2. Time-zone configuration
3. ntp configuration

A monitor, keyboard and mouse must be connected to the Mark 5 system.

If you do not know the root password, contact Richard Crowley at rcrowley@haystack.mit.edu
or phone him at 978-692-4764 or 781-981-5503.

2. Information You Will Need

You will need the following information to configure the Mark 5 system:

<IP address> (e.g., ‘192.52.61.57’)

<local hostname> (e.g., ‘Mark5-15’)

<alias> (a nickname for your system; usually same as <local hostname>)

<local domain> (e.g., ‘haystack.mit.edu

<network mask> (e.g., typically ‘255.255.255.0’ for class C network, ‘255.255.0.0’ for
class B, or ‘255.0.0.0’ for class A; check with your sysadmin)

<nameserver IP> (e.g., ‘192.52.61.1’) – local DNS name server IP address

<gateway IP> (e.g., ‘192.52.61.17’) – local gateway IP address

<ntp server> pick from list at http://www.eecis.udel.edu/~mills/ntp/clock1.html; IP
address preferred, but can use name (e.g., ‘164.122.7.123’ or
‘tick.mhpcc.edu’). Choose one with which you have good connectivity.

3. Determine Red Hat Release Number

Enter cat /etc/redhat-release to determine you Red Hat Linux release. It will probably be
either 7.1 or 7.2, though we are currently working to include later releases as well.

Follow the appropriate instructions below.

4. Network Configuration (Red Hat Release 7.1)

1. Connect your system to your local network with an RJ-45 network cable.
2. Log in as root
3. startx to start X-Windows GUI interface1
4. Click on Gnome (footprint icon) Programs System Network Configuration to start

the GUI Network Configurator.

1 Since X-windows is set up to work with a specific monitor, there is a possibility that it might not work with a
different monitory. Please contact us if that is the case.

 1

mailto:rcrowley@haystack.mit.edu
http://www.eecis.udel.edu/~mills/ntp/clock1.html

5. You will see 4 tabs, with information to be entered under each:
a. Names

Hostname – set to <local hostname>
Domain – set to <local domain>
Nameservers – set to <nameserver IP> (can add others if they exist)

b. Hosts
IP – set to <IP address>
Name – set to <local hostname>.<local domain>

(i.e. ‘Mark5-15.haystack.mit.edu’) Leave the ‘127.0.0.1’ entry.
Nicknames – set to <alias>

c. Interfaces
Click on ‘eth0’
If ‘eth0’ is ‘inactive’, click on ‘Activate’
Click ‘Edit’

IP – set to <IP address>
Netmask – set to <network mask>
Network Broadcast:

Check ‘Activate interface at boot time’
Uncheck ‘Allow any user to (de)activate interface’

Click ‘Done’
d. Routing

Default Gateway – set to <gateway IP>
6. Click ‘Save’, then ‘Quit’
7. Log out of X-Windows: Gnome→Log Out
8. Mark sure ‘Action’ is ‘Logout’ – click ‘Yes’.
9. /sbin/shutdown –r now to reboot and activate changes.

5. Network Configuration (Red Hat Release 7.2)
1. Connect your system to your local network with an RJ-45 network cable.
2. Log in as root
3. startx to start X-Windows GUI interface
4. Click on Gnome(footprint icon)→Programs→System→Network Configuration to start

the GUI Network Configurator; enter root password as requested
5. You will see 4 tabs, with information to be entered under each:

a. Hardware
Should show your Ethernet interface as ‘eth0’.
No changes are normally necessary.

b. Devices
Select ‘eth0’, click ‘Edit’
i. General

Select ‘Activate device when computer starts’
 2

De-select ‘Allow all users to enable and disable this device’
ii. Protocols

Click on ‘TCP/IP’, then ‘Edit’
a. TCP/IP

De-select ‘Automatically obtain IP address …’
Address – set to <IP address>
Subnet Mask – set to <network mask>
Default Gateway Address – set to <gateway IP>

b. Hostname
Hostname – empty
Deselect ‘Automatically obtain DNS information from provider’
Click ‘OK’

c. Routing
Should be empty

Click ‘OK’
iii. Hardware Device

Should be OK as is. Make sure ‘Enable Device Alias support’ and
‘Use Hardware Address’ are both de-selected.

Click ‘OK’
c. Hosts

If there is already an entry with <IP address>, etc., for this system click
‘Delete’ or ‘Edit’, as appropriate. If new entry to be created, click ‘Add’.

Address – set to <IP address>
Hostname – set to <local hostname>
Alias – set to <alias>
Click ‘OK’

d. DNS
Hostname – set to <local hostname>
Domain – set to <local domain>
Primary DNS – set to <nameserver IP>
Secondary DNS – as applicable
Tertiary DNS – as applicable
DNS Search Path – should be empty
Search Domain – should be empty

Click ‘Close’, then ‘Yes’
6. Log out of X-Windows: Gnome→Log Out
7. Mark sure ‘Action’ is ‘Logout’ – click ‘Yes’.

 3

8. /sbin/shutdown –r now to reboot and activate changes2.
6. Check Network Configuration
Check the results of the network configuration as follows.

1. Login as root
2. Check local hostname and domain

Enter cat /etc/hosts go view contents of /etc/hosts file:
There should be a line of the form

<IP address> <local hostname>.<local domain> <local hostname>
Alternately,

/sbin/ifconfig –a will show the IP address assigned to your machine.
hostname will show the hostname of your machine

3. Check name server
Enter cat /etc/resolv.conf to view contents of resolv.conf file

You should see the following lines, in any order:
search <local domain>
nameserver <nameserver>
domain <local domain> (may be present; not necessary)

4. Check subnet mask
Enter /sbin/ifconfig –a

Find the value of ‘Mask’ in the listing; should be <network mask>
5. Check routing table

/sbin/route -n will list the routing table
It should have at least 3 entries, as follows:
Destination Gateway Genmask Flags Metric Ref Use Iface
<routing mask> 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 <gateway IP> 0.0.0.0 UG 0 0 0 eth0

where
<routing mask> is same as <gateway IP> except ‘0’ in 4th subfield (i.e. if <gateway IP> is
‘192.52.61.xx’, then <routing mask> is ‘192.52.61.0’

7. Check Network Operation
When you think everything is all set, ping an address inside your local network and one outside
of your local network to test network connectivity. The ping target may be either named or an IP
address. Following is an example of a successful ping:

(Initiate ping) ping planck.haystack.edu
(Response) Pinging planck.haystack.edu [192.52.61.1] with 32 bytes of data:

Reply from 192.52.61.1: bytes=32 time time<1ms
8. Time-zone Configuration

The local time zone is set in file /etc/sysconfig/clock, which will contain a line similar to
ZONE=”America/New_York”

2 For efficiency, you may want to also set the time-zone configuration before re-booting (see Section 8).

 4

The directory /usr/share/zoneinfo contains all possible timezones, including sub-
directories with additional possibilities. In this example, America/New_York is the filename
(within the /usr/share/zoneinfo directory) that resolves the New York time zone. Starting
at /usr/share/zoneinfo, drill down as needed to find the file that resolves your particular
time zone. Then, as root, run your favorite editor on /etc/sysconfig/clock to edit the
ZONE=… line with that filename. Examples:

ZONE=”Japan”

ZONE=”Europe/Berlin”

ZONE=”America/Indiana/Indianapolis”

Reboot for the new time zone to take effect.
9. ntp Configuration

9.1 Set time at boot

Time is updated at boot time by adding (or editing) the following line in /etc/rc.d/rc.local
/usr/sbin/ntpdate -b -p 8 -u <ntp server>

9.2 Daily time update

There are two methods to ensuring that your system properly keeps time over the long term:

9.2.1. Establish a cron job to update time daily

There are 2 ways to do this (must be root):

a. Enter crontab -e to open up the default editor and enter (or edit) the following line:
30 2 * * * * /usr/sbin/ntpdate -b -p 8 -u <ntp server>

Save the file3. This will cause the time to be updated everyday at 2:30 am (2:30 am was
chosen arbitrarily; could be any time).

b. Create or edit file timeupdate or ntpdate (one of these files will probably already
exist) in directory /etc/cron.daily containing the line

/usr/sbin/ntpdate -b -p 8 -u <ntp server>

Change the file permissions to 755 (chmod 755 filename). The script in any file in
directory /etc/cron.daily is executed once per day at about 4:00am (by default), so
technically this file may have any name you wish.

9.2.2 Install NTP

Instructions for installing NTP are in /usr/share/doc/ntp-*/index.htm.

If you choose this option, you should remove the ntp file in /etc/cron.daily

 5

3 The file is /var/spool/cron/root, which should not be directly edited. Entering crontab –e as root
opens/creates this file and brings up the default editor (usually vi). Entering crontab –e as a user does the same
thing, except the corresponding file is /var/spool/cron/<username>.

	command5a.pdf
	1. Mark5A program
	2. Notes on command set
	6. Mark 5A Command/Query Summary (by Category)
	7. Mark 5A Command/Query Summary (Alphabetical)
	8. Mark 5A Command Set Details
	
	
	
	To set up connection: First, issue ‘open’ to the
	After play is turned ‘on’, the user should period
	During playback initiated by a ‘scan_play’ comman

	linux.pdf
	2. Information You Will Need
	3. Determine Red Hat Release Number
	4. Network Configuration (Red Hat Release 7.1)
	5. Network Configuration (Red Hat Release 7.2)
	/sbin/shutdown –r now to reboot and activate cha
	6. Check Network Configuration
	7. Check Network Operation
	8. Time-zone Configuration
	Reboot for the new time zone to take effect.
	9. ntp Configuration

	9.1 Set time at boot
	9.2 Daily time update

