
# Introduction to the K5 System

Mamoru Sekido<sup>(1)</sup>, Yasuhiro Koyama<sup>(1)</sup>, and Tetsuro Kondo<sup>(1,2)</sup>

Kashima Space Research Center, NICT, Japan
 Ajou University, Korea

1. Concept of the K5 System

The K5 VLBI system is designed to perform real-time or near-real-time VLBI observations and correlation processing using Internet Protocol over commonly used shared network lines. Various components are being developed to realize the target goal in various sampling modes and speeds. The entire system will cover various combinations of sampling rates, number of channels, and number of sampling bits. All of the conventional geodetic VLBI observation modes will be supported as well as the other applications like single-dish spectroscopic measurements or pulsar timing observations will also be supported. The concept as the family of the K5 system is show in the Fig. 1.



As shown in the Fig. 1, there are two sorts of VLBI systems. One is a series of DAS system s using combination of ADS sampler device s with VSI-H interface and PC-VSI card as interface for PC to capture VLBI observation data. This system is called K5/VSI system. Another one is DAS system using IP-VLBI sampler unit with 4 channels of data sampler per one unit. This system is called K5/VSSP or K5/VSSP32 systems. These two types of DAS system have their own software correlation software. Though the data format of the two types of DAS is different at present, new standard VLBI data format (VDIF[1]) will be supported for both DASs.

### 1.1 K5/VSI Data Acquisition System

K5/VSI is the name for DAS system with VSI (VLBI Standard Interface) as hardware data interface between sampler and PC. NICT has developed three kinds of VLBI data sampler system named ADS-1000, ADS-2000, and ADS3000/ADS3000plus. All of these sampler systems have VSI-H interface [2] as output. These samplers are used by different observation modes for their purposes.

|                | Table 1. Specif | ications of the ea | ch VSI sampler  | 'S.                               |
|----------------|-----------------|--------------------|-----------------|-----------------------------------|
|                | ADS1000         | ADS2000            | ADS3000         | ADS3000Plus                       |
| Sampling Speed | 1024Msps        | 64Msps             | 2048Msps        | $\sim 4  \rm Gbps$                |
| Sampling Bits  | 1 bit or 2 bits | 1 bit or 2 bits    | 8 bits          | 2/4/8 bit                         |
| No. of Input   | 1               | 16                 | 1               | 2                                 |
| No. Channels   | 1               | 16                 | Programmable    | Programmable                      |
| Max. Data Rate | 2048Mbps        | 2048Mbps           | 4096Mbps        | 8192Mbps                          |
| Interface      | VSI-H (2 ports) | VSI-H (2 ports)    | VSI-H (2 ports) | VSI-H (4 ports)                   |
| Diff.dide:     |                 |                    | NAME CONTRACTOR |                                   |
| ADS1000        | ADS             | 2000               | ADS3000         | COMO HIMANGAR ADSIXON- ao ar anna |
|                |                 |                    |                 | ADS3000Plus                       |

Overview of the specification of the samplers is listed in table 1.

ADS-1000 has one channel input with 1024MHz sampling. This system is mainly used for domestic astronomical observation to get wide frequency band to get higher sensitivity. This system has been employed for VERA project of NAOJ(National Astronomical Observatory of Japan) in conjunction with digital filter backend, where 2-16 narrower frequency channels are extracted. The ADS1000 is also employed in Korean VLBI network (KVN) observation system.

ADS2000 has 16 video signal inputs with 32MHz sampling each. Since there are some trouble in 64MHz sampling mode, where 2048Mbps (64Msps/2bit/16ch) sampling is designed, constant 32MHz sampling is used at present. Jointly using anti-aliasing analog video filter in front of sampler and down sampling of data after the sampler, variety of observation modes is supported. Some of typical observation modes are 32Msps/2bit/16ch (=1024Mbps), 32Msps/2bit/8ch (=512Mbps), and 16Msps/2bit/8ch (=256Mbps). Mark5B emulator has been developed by using ADS-2000 and joint international eVLBI observations are now available.

ADS3000/ADS3000plus is a new generation VLBI sampler with digital base-band conversion (DBBC) function. FPGA logic ICs are used for implementation of the data processing algorithm and it can be easily modified by re-loading the hardware program of FPGA. Conventional geodetic VLBI observation mode with 16 frequency channels can be realized by the DBBC function of ADS3000plus.

VSI-board is the common interface board for PC by using 64bit-PCI bus. Since this board is VSI-H compliant, any other samplers can be connected used. In fact Makr5B sampler is compliant to the VSI-H specification, thus it could be connected to the PC-VSI card and used for VLBI experiment with Kashima. High Speed software correlator for K5/VSI named 'GICO-3' has been developed by M.Kimura[3]. And the GICO-3 software correlator is being implemented for backup software correlator for VERA project of NAOJ.

### 1.2 K5/VSSP32 Data Acquisition System

K5/VSSP32 is another VLBI sampler. Its other name is IP-VLBI sampler. It is designed with 4 video signal inputs per one unit. Its first version is called K5/VSSP and the second version is named K5/VSSP32[4] (Fig. 1).



K5/VSSP(left) and K5/VSSP32(right) sampler boards. Fig. 2.

| Sampling Freq. (MHz)       | 0.04, 0.1, 0.2, 0.5, 1, | 0.04, 0.1, 0.2, 0.5, 1, 2, |
|----------------------------|-------------------------|----------------------------|
|                            | 2, 4, 8, 16             | 4, 8, 16, 32, 64           |
| Built-in digital LPF(MHz)  |                         | 2, 4, 8, 16, through       |
| Analog Input range         | -1V - +1V               | -1V - +1V                  |
| Analog Bandwidth of A/D    | 100MHz                  | 300MHz                     |
| AD resolution bit          | 1,2,4,8                 | 1,2,4,8                    |
| No. of Channels per unit   | 1,4                     | 1,4                        |
| Maximum data rate per unit | 64Mbps                  | 256Mbps                    |
| DC offset adjustment       | NA                      | Available from host PC     |

Table 2. Comparison of the old (K5/VSSP) and new(K5/VSSP32) samplers.

| Reference signal input | 1PPS, 10MHz | 1PPS, 10MHz or 5MHz |
|------------------------|-------------|---------------------|
| Data Interface         | PCI bus     | USB 2.0             |

The Comparison of characteristics between two samplers is indicated in Table. 2. Now only K5/VSSP32 is regularly used for geodetic VLBI observation of IVS project. VSSP is an acronym of the Versatile Scientific Sampling Processor. This name is used because the system is designed to be used for general scientific measurements. The sampler has variety of sampling rate and quantization bits (Table 2). Combination use of multiple K5/VSSP32 samplers enables variety of observation modes for versatile purposes. Sampled data is stored on file system of each PC as standard binary file on that operating system. When 16 channels of observation are performed, four set of VLBI data is generated in parallel and stored for each scans. The data is stored in frame format, where 32 byte header part and following data part containing 1 sec of data. And that frame for 1 sec is repeated every seconds. The structure of the header part is indicated in Fig. 3.

|         | 15                              | 14     | 13   | 12    | 11     | 10    | 9       | 8         | 7      | 6       | 5      | 4     | 3    | 2        | 1           | 0      |
|---------|---------------------------------|--------|------|-------|--------|-------|---------|-----------|--------|---------|--------|-------|------|----------|-------------|--------|
| 0x00    | sync pattern (all 0xFF)         |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0x01    |                                 | ,      |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0x02    |                                 |        |      |       |        |       |         | 0h UTC    | × ×    | /       |        |       |      |          |             | (LSB)  |
| 0x03    |                                 |        |      |       |        |       |         | VSSP)     | AD     | bits    |        | -     | -    | quency   | $^{\rm ch}$ | (M)    |
| 0x04    | eflg                            | -      |      | - /   | ) (6bi | ts:   | 0-63)   |           |        |         | total  |       | ×    | /        |             |        |
| 0x05    |                                 | jor ve |      |       |        |       |         | on #      | AU     |         |        |       | · ·  | ytes : d |             | is 20) |
| 0x06    | LPF                             | F freq | uenc | y (Ml | Hz: 0  | ) mea | ns thr  | ough)     |        | A       | UX     | FIEI  | D fo | mat #    | = (1)       |        |
| 0x07    |                                 |        |      |       |        | 1     | statior | ı ID (m   | ax 2   | charct  | ers)   |       |      |          |             |        |
| 0x08    |                                 |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0x09    |                                 |        |      |       |        | sta   | ation 1 | name (n   | 1ax 8  | chara   | cters  | a     |      |          |             |        |
| 0x0A    | station name (max 8 characters) |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0x0B    |                                 |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0 x 0 C |                                 |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
| 0x0D    |                                 |        |      |       |        | PC    | host    | name (1   | nax 8  | 8 char  | acter  | s)    |      |          |             |        |
| 0x0E    |                                 |        |      |       |        |       |         | (-        |        |         |        | -)    |      |          |             |        |
| 0x0F    |                                 |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
|         |                                 |        |      | effg: | set v  | vhen  | error   | occurre   | d in a | n previ | ious i | frame | Э    |          |             |        |
|         |                                 |        |      |       |        |       |         |           |        |         |        |       |      |          |             |        |
|         |                                 |        |      | ]     | Fig. 3 | 3 Hea | ader p  | oart of l | K5/V   | SSP3    | 2  da  | ta    |      |          |             |        |

More detailed documentation on K5/VSSP is available on the web[5]. Observation software and source code is available from the web page.

Fig.4 is one of the combined set of the K5 system with 4 units of K5/VSSP samplers are equipped. The system has a capability to sample analog data stream by using the external frequency standard signal and the precise information of the sampled timing. The system is also used to process the sampled data. For geodetic VLBI observations, software correlation program runs on the K5/VSSP system. Therefore, it can be said that the functions of the formatter, the data recorder, and the correlator are combined into the single system. It is consist of four Linux PC systems. Each Linux PC system has one K5/VSSP sampler. The total recording speed with 4 units of sampler is 1024 Mbps.

To process the data sampled with the K5 data acquisition system, software correlation processing program has been developed on conventional PC systems. The correlation processing program shares the data via Network File System



(NFS) over local area network (LAN), then it computes cross correlation functions without any specially designed hardware. Since easily re-writable software programs and general PC systems are used, the processing capacity and the function of the correlator can be easily expanded and upgraded.

#### 2. Example of Observation Operation with K5/VSSP32

Since the most geodetic VLBI observations including IVS sessions are performed with K5/VSSP32 system at present, some example of observation operation procedure with K5/VSSP32 is explained here.

A) Capturing data following to the schedule file.

Software tool 'autoobs' is used for this purpose. Generally, just typing the command name will show simple usage of that command. Usually 'autoobs' is used as follows: autoobs –'config file'

The "config file" contains 'path to the observation schedule file', 'channel group of recording', 'station ID', 'entries of paths of the directory to store the data', 'Observation mode', 'output file naming convention type'. Example of the 'config file' is indicated in Appnedix-B.

B) Capturing data for a certain length of period, manually

sampling <span> <sfreq>[:lpf] adbit[:bitshift] numch [filename [logfile]]

ex.) sampling 30 4 2 4 test.dat

This means 4MHz/2bit/4ch sampling for 30 sec will be recorded on test.dat file. More explanation on option is available by just typing 'sampling'.

C) Checking recorded data

'datachk' command is used for checking K5/VSSP data datachk datafile [mode [logfile [errlog [keepmode]]]] ex.) datachk k5test.dat 1 will shows the time-code, sampling mode and statistics for every seconds. More explanation on option is available by just typing 'datachk'.

'm5check' command is used for checking Mark5A data.
m5check m5file [mode]
ex.) m5check mark5data.dat
More explanation on option is available by just typing 'm5check'.

D) Conversion from Mark5A data to K5/VSSP data

Command 'm5tok5' is used for this purpose.

ex.) m5tok5 mark5\_fle.dat -g 1 -i m5tok5info256.txt -o k5file\_grp1.dat

This command converts 'mark5\_file.dat' to 'k5file\_grp1.dat' which will contain data of channel 1-4. The information file 'm5tok5info256.dat' is necessary to describe the mark5 data information. Example of this file is at Appendix C.

E) Conversion from K5/VSSP data to Mark5A data

Command 'k5tom5' is used for this purpose.

ex.) k5tok5 2009114 k5file1 k5file2 k5file3 k5file4 -i k5tom5info256.txt -o mark5file.dat

This command converts a set of k5 files to 'mark5file.dat' which contains data of 16 channels. The information file 'k5tom5info256.dat' is necessary to describe the mark5 data configuration. Example of this file is at Appendix D.

Software library and documentation to operate the K5/VSSP(32) is developed and maintained mainly by T.Kondo. That software library includes (1) Observation with K5/VSSP(32), (2) Data conversion between K5/VSSP(32)  $\Leftrightarrow$  Mark5A. (3) Miscellaneous tools for checking the data, checking the schedule file, computing spectrum from the data, extracting one channel data from a data set containing 4 ch data, merging data from multiple one channel data sets to 4 channel data set, cutting out a chunk of data from long observation, and so on. The names of K5/VSSP tools are listed in the table of Appendix 1. These software tools and documentation is available from web page [5].

## Appendix A. List of utilities used with the K5/VSSP system

| #  | Command                                                          | Funciton Description                                                        |  |  |  |  |  |  |  |
|----|------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    |                                                                  | Sampler Dependent Software                                                  |  |  |  |  |  |  |  |
|    | (driver                                                          | for K5/VSSP or K5/VSSP32 sampler must be installed first)                   |  |  |  |  |  |  |  |
| 1  | signalcheck                                                      | check reference and 1PPS signals supplied to a sampler                      |  |  |  |  |  |  |  |
| 2  | timesettk                                                        | set time of a sampler                                                       |  |  |  |  |  |  |  |
| 3  | timeadjust                                                       | adjust time of a sampler by 1 sec step                                      |  |  |  |  |  |  |  |
| 4  | timedisp display time of a sampler                               |                                                                             |  |  |  |  |  |  |  |
| 5  | timesync synchronize sampler time to 1PPS signal                 |                                                                             |  |  |  |  |  |  |  |
| 6  | sampling triger sampling start and acquire data                  |                                                                             |  |  |  |  |  |  |  |
| 7  | sampling2 as same as "sampling" but higher functional capability |                                                                             |  |  |  |  |  |  |  |
| 8  | autoobs perform automatic observation using a sampler            |                                                                             |  |  |  |  |  |  |  |
| 9  | monit                                                            | monitor input signal level of a sampler with sampler time                   |  |  |  |  |  |  |  |
| 10 | monit2                                                           | monitor occurence of error of a sampler for initial checking                |  |  |  |  |  |  |  |
| 11 | setdcoffset set DC offset of a K5/VSSP32 sampler                 |                                                                             |  |  |  |  |  |  |  |
| 12 | pctimeset                                                        | set host PC time using sampler time                                         |  |  |  |  |  |  |  |
| 13 | timesetpc                                                        | set sampler time using host PC time (for checking)                          |  |  |  |  |  |  |  |
| 14 | timecheck                                                        | check false operation in time reading from a sampler (for initial checking) |  |  |  |  |  |  |  |

# Appendix A. List of utilities used with the K5/VSSP system (Continued)

| #  | Command        | Funciton Description                                                   |
|----|----------------|------------------------------------------------------------------------|
|    |                | Sampler Independent Software                                           |
| 15 | datachk        | check sampled data.                                                    |
| 16 | speana         | display spectrum                                                       |
| 17 | speana2        | display spectrum (higher functional capability)                        |
| 18 | skdchk         | check an observation schedule                                          |
| 19 | extdata        | extract data from a sampled data file and output as an aschii file     |
| 20 | four2one       | convert data file format from 4ch mode to 1ch mode                     |
| 21 | datacut        | extract data for a given period from a data file                       |
| 22 | adbitconv      | convert AD bit resolution of a sampled data file                       |
| 23 | one2four       | combine 4 1-ch data files to a 4-ch data file                          |
| 24 | data_half      | half the samplig frequency by thinning sampled data                    |
| 25 | data_double    | double the sampling frequency by repeat a sample twice                 |
| 26 | k5v32tok5      | convert K5/VSSP32 format data to K5/VSSP format                        |
| 27 | k5tok5v32      | convert K5/VSSP format data to K5/VSSP32 format                        |
| 28 | data_recov     | recover K5/VSSP and K5/VSSP32 data header                              |
| 29 | vssplogana     | analyze a log file of "sampling" or "autoobs" and a summary file of    |
| 25 | vsspiogaria    | "datachk"                                                              |
| 30 | aux_recov      | recover an auxiliary field of K5/VSSP32 data header                    |
| 31 | pcalcheck      | monitor PCAL phase and amplitude in a K5/VSSP or K5/VSSP32 data        |
| 01 | pealencek      | file (recommended graphics is PGPLOT)                                  |
|    | Shel           | I Script to test a K5/VSSP32 sampler (Version 2007-03-02)              |
| 32 | vssp32test.sh  | test a K5/VSSP32 sampler by changing sampling frequency                |
| 33 | vssp32test2.sh | test a K5/VSSP32 sampler with fixed sampling parameters                |
| 34 | vssp32test3.sh | test a K5/VSSP32 sampler by changing sampling frequency in a given     |
| 54 | vssp52test5.sh | range                                                                  |
|    | Forn           | nat Converter between K5 and Mark5 (Version 2009-02-17)                |
| 35 | k5tom5         | convert K5VSSP or K5/VSSP32 format to Mark5 format                     |
| 36 | m5check        | analyze Mark5 format data, and display header block without sync check |
| 37 | m5time         | display time label in Mark5 format data                                |
| 38 | m5tok5         | convert Mark5 format to K5/VSSP format                                 |
| 39 | m5vex_ana      | analyze a VEX schedule file                                            |

```
** Sample K5 run control file Ver 3.6
**
$SKED
/home/vlbi/schedule/u8193f.skd
                                          * schedule file VEX file is allowed
$STATION ID
                     * station ID.
                                      1 chars for SKED and 2 chars for VEX
0
$LOGDIR
/home/vlbi/ipvlbi/log
                      * log directory
$OUTDIR
                       * up to 10 entries
                           * 1st out put directory candidate
/k55a/ad5/u8193f/kas34
/k55a/ad6/u8193f/kas34
                            * 2nd out put directory candidate
$SAMPLE
span=0
           * obs span (sec), 0 means as schduled
          * sampling frequency 40,100,200,500 (for kHz) 1,2,4,8,16 (for MHz)
sfrea=32
adbit=1 * A/D bits 1,2,4,8
           * # of channels
numch=4
                             1,4
$NAMING_TYPE
   out file naming type selection
*1 ** Type I
                 XDDDNNNN.dat
                         -- satation id (1 char)
              where X
                    DDD -- total day at 1st scan (3 digits)
                    NNNN -- obs number (4digits)
*-1 ** Type –I
                 XDDDNNNN.#ch.dat
              where #ch -- number of channels in data
2
   ** Type II
                sidDDDHHMMSSG.dat
              where sid -- station id (1 char or 2 char)
                    DDD -- total day at current scan (3digits)
*
                            -- hour at the start of scan (2digits)
                    HH
*
                            -- minute at the start of scan (2digits)
                    MM
*
                    SS
                            -- second at the start of scan (2 digits)
                            -- frequency group id (alb|c|d) or null
                    G
     ** Type -II sidDDDHHMMSSG.#ch.dat
*-2
              where #ch -- number of channels in data
*3 ** Type III (compliant with e-VLBI file-naming conventions)
       expid_sid[G]_scanid_YYYYDDDDHHMMSS.k5
              where expid -- experiment code
*
                    sid
                           -- station ID (2 lower-case characters)
                    G
                             -- PC id (1|2|3|4)
                    scanid -- scan id
                    YYYY -- year (4digits)
                    DDD
                             -- total day at current scan (3digits)
                    HH
                             -- hour at the start of scan (2digits)
                    MM
                             -- minute at the start of scan (2digits)
                    SS
                             -- second at the start of scan (2 digits)
$FREQ G
    set frequency group used in type II naming rule
      or PC id used in type III naming rule
*
    if omitted null character is used, i.e., file name
*
    will be sidDDDHHMMSS.dat
       1,2,3,4 or a,b,c,d is possible
       a,b,c,d is automatically converted to 1,2,3,4 in type III naming rule
   ** means 'a'
1
    ** also OK for 'a'
*a
$SUBNET
    subnet mode selection on | off (default on)
on
$FILE SIZE LIMIT
    file size limitation on | off (default on)
*
    if set to "on", big file is divided into 2GB each.
*
    if set to "off", no limitation on 1 file size.
off
```

| Appnedix-C Example of Information file                               | \$BITPOS; * bit position versus track<br>information<br>** |
|----------------------------------------------------------------------|------------------------------------------------------------|
| ••                                                                   | ** bb => bit position#                                     |
| for 'm5tok5'                                                         | ** h-tt=>h: head stack#, tt: track#                        |
|                                                                      | ** bitpos=bb:h-tt                                          |
|                                                                      | bitpos = 00:1-02;                                          |
|                                                                      | bitpos = 01 : 1-03;                                        |
|                                                                      | bitpos = 02:1-04;                                          |
|                                                                      | bitpos = 03:1-05;                                          |
|                                                                      | bitpos = 04:1-06;                                          |
|                                                                      | bitpos = 05:1-07;                                          |
| *** mk5tok5 information file created by m5tok5 (Ver 2.03 2005-01-13) | bitpos = 06:1-08;                                          |
| *** on Sun Jun 11 11:27:25 2006                                      | bitpos = 07: 1-09;;                                        |
| *** (head stack number included in track info)                       | bitpos = 08:1-10                                           |
| *** analyzed VEX file : 1/k06161.vex                                 | bitpos = 08:1-10;                                          |
| *** analyzed Mark-5 file : /k06161_0059+581_161-0740                 | bitpos = 09:1-11;                                          |
| *** station:WETTZELL (Wz)                                            | bitpos = 10: 1-12;                                         |
| *** mode (for scan #1) : GEOSX4F-4F                                  | bitpos = 11:1-13;                                          |
| ***                                                                  | bitpos = 12:1-14;                                          |
| \$CHANNEL; * channel-track info block                                | bitpos = 13:1-15;                                          |
| adbit = 1; * A/D resolution                                          | bitpos = 14:1-16;                                          |
| sample = 16000000.000000; * Sampling frequency                       | bitpos = 15:1-17;                                          |
| fanout=2; * Fanout                                                   | bitpos = 16:1-18;                                          |
| ** default pass =A                                                   | bitpos = 17:1-19;                                          |
| **                                                                   | bitpos = 18:1-20;                                          |
| ** nn =>channel#                                                     | bitpos = 19:1-21;                                          |
| ** $h-ss \Rightarrow h$ : head stack #, ss: sign bit track #         | bitpos = 20:1-22;                                          |
| ** h-mm => h: head stack #, mm: magnitude bit track #                | bitpos=21:1-23;                                            |
| **ch=nn:h-ss:h-ss                                                    | bitpos = 22:1-24;                                          |
| ch = 01: 1-02: 1-04;                                                 | bitpos=23:1-25;                                            |
| ch = 02: 1-10: 1-12;                                                 | bitpos = 24:1-26;                                          |
| ch = 03: 1-14: 1-16;                                                 | bitpos = 25: 1-27;                                         |
| ch = 04: 1-18: 1-20;                                                 | bitpos = 26: 1-28;                                         |
| ch = 05: 1-22: 1-24;                                                 | bitpos = 27: 1-29;                                         |
| ch = 06: 1-26: 1-28;                                                 | bitpos = 28:1-30;                                          |
| ch = 07: 1-30: 1-32;                                                 | bitpos = 29:1-31;                                          |
| ch = 08:1-03:1-05;                                                   | bitpos=30:1-32;                                            |
| ch = 09:1-11:1-13;                                                   | bitpos=31:1-33;<br>CPOLID: * croum#upprove channel#table   |
| ch = 10: 1-15: 1-17;                                                 | \$GROUP; * group#versus channel#table                      |
| ch = 11: 1-19: 1-21;                                                 |                                                            |
| ch = 12:1-23:1-25;                                                   | **Please edit this table as you like **                    |
| ch = 13:1-27:1-29;                                                   | ** g =>group#                                              |
| ch = 14:1-31:1-33;                                                   | ** $ch1 \Rightarrow 1st channel # in this group$           |
| ch = 15:1-06:1-08;                                                   | ** $ch2 \Rightarrow 2nd channel # in this group$           |
| ch = 16:1-07:1-09;                                                   | ** $ch3 \Rightarrow$ 3rd channel # in this group           |
| \$DATAMODE; * Mark-V data format                                     | ** $ch4 \Rightarrow 4th channel # in this group$           |
| parity=0; *non-parity                                                | **group=g:ch1:ch2:ch3:ch4;                                 |
| nrzm =0; *NRZLencoding                                               | group=1: 1: 2: 3: 4;                                       |
| format=Mark-IV;*Mark-III or IV format                                | group=1: 1: 2: 5: 4;<br>group=2: 5: 6: 7: 8;               |
| ntrack=32;*#of tracks (bits/word)                                    | group= $2: 5: 6: 7: 8;$<br>group= $3: 9: 10: 11: 12;$      |
|                                                                      | group=4: 13: 14: 15: 16;                                   |
|                                                                      | group 1. 10. 11. 10. 10,                                   |

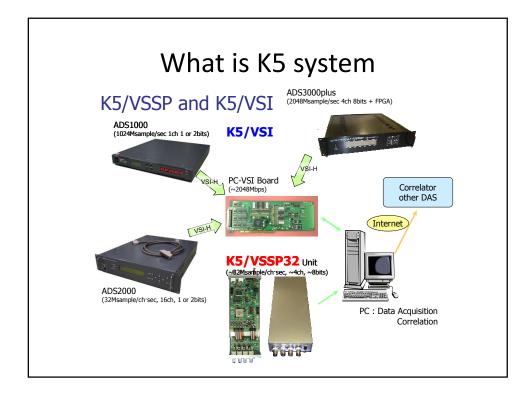
### Appnedix-D Example of Info file for <sup>\$DATAMODE; \* Mark-V data format</sup> 'k5tom5' \*\* Please edit this table as you like \*

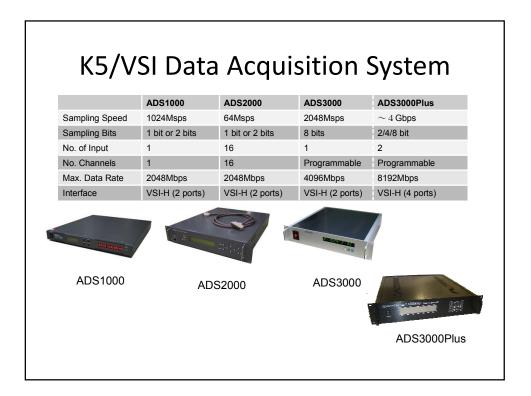
```
*** k5tom5 information file created by k5tom5 (Ver 1.32 2008-02-19)
***
       on Thu May 08 09:08:03 2008
***
    (head stack number included in track info)
***
    analyzed VEX file : d:/temp/rd0803.vex
***
    station : TSUKUB32
                         (T_s)
***
    mode(for scan #1) : GEOSX8N-8F
***
$CHANNEL; * channel-track info block
  adbit = 2; * A/D resolution
  sample=1600000.000000; *
                              Sampling frequency
  fanout=1; * Fanout
** default pass = A
**
**
     nn ⇒channel#
**
     h-ss => h: head stack #, ss: sign bit track #
**
     h-mm \Rightarrow h: head stack #. mm: magnitude bit track #
**
     bbc#=>BBC#
**
     sb => sideband L(SB) or U(SB)
** ch = nn : h-ss : h-mm : bbc#: sb
 ch=01:1-02:1-04: 1:U;
 ch = 02:1-06:1-08:
                    1:L;
 ch = 03: 1-10: 1-12:
                     2:U;
 ch = 04:1-14:1-16:
                     3:U:
 ch = 05:1-18:1-20:
                     4:U;
  ch = 06: 1-22: 1-24:
                     5:U;
 ch = 07: 1-26: 1-28:
                     6:U;
 ch=08:1-30:1-32:
                     7:U;
 ch = 09:1-03:1-05:
                     8:U;
 ch = 10: 1-07: 1-09:
                     8:L;
  ch = 11 : 1 - 11 : 1 - 13 :
                     9:U;
  ch=12:1-15:1-17: 10:U;
 ch=13:1-19:1-21: 11:U;
 ch=14:1-23:1-25: 12:U;
 ch=15:1-27:1-29:13:U;
 ch=16:1-31:1-33: 14:U;
$DATAMODE; * Mark-V data format
****
**
     Please edit this table as you like
*****
**
  parity=1; *non-parity
  nrzm =1; *NRZLencoding
 format=VLBA;*Mark-IV format
  ntrack = 32; *# of tracks (bits/word)
  modulation = ON
```

\$DATAMODE; \* Mark-V data format \*\* Please edit this table as you like \*\*\*\*\* -<u>4</u>--4parity=1; \*non-parity nrzm =1; \*NRZLencoding format=VLBA;\*Mark-IV format ntrack = 32; \*# of tracks (bits/word) modulation = ON**\$BITPOS;** \*\* bit position versus track information \*\*\*\*\* \*\* Please edit this table as you like \*\*\*\*\* -1--1bb  $\Rightarrow$  bit position# \*\* h-tt=>h:head stack#.tt;track# \*\* bitpos=bb:h-tt bitpos = 00:1-02;bitoos = 01:1-03;bitpos = 02:1-04;bitpos = 03:1-05;bitpos = 04:1-06;bitpos = 05:1-07;bitpos=06:1-08; bitpos=07:1-09; bitoos = 08:1-10;bitpos=09:1-11; bitpos = 10: 1-12;bitpos = 11:1-13;bitpos = 12:1-14;bitpos = 13:1-15;bitpos = 14:1-16;bitpos = 15:1-17;bitpos = 16:1-18; bitpos = 17:1-19;bitpos = 18:1-20; bitpos = 19:1-21;bitpos=20:1-22; bitpos = 21:1-23; bitpos=22:1-24; bitpos = 23:1-25; bitpos = 24:1-26;bitpos = 25:1-27;bitpos = 26:1-28; bitpos = 27:1-29;bitpos = 28:1-30; bitpos=29:1-31; bitpos = 30:1-32;bitpos = 31:1-33;

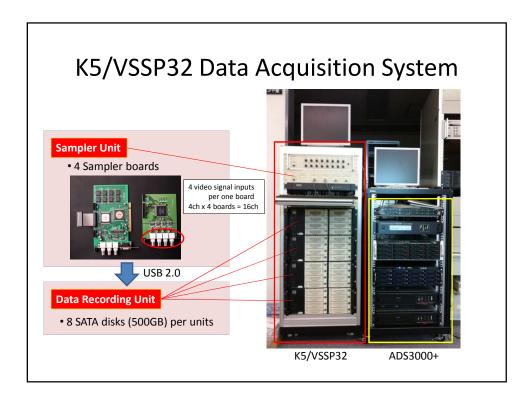
### References

[1] Whitney, A., VLBI Standard Hardware Interface Specification -- VSI-H, 2002. http://www.haystack.mit.edu/tech/vlbi/vsi/docs/2002\_12\_12\_vsi-h\_draft\_rev\_1.1.pdf [2] VLBI Data Interchange Format (VDIF) specification,


- [3] Kimura, M., J. Nakajima, H. Takeuchi, T. Kondo, High Performance PC Based Gigabit VLBI System, IVS-NICT TDC News No. 25, pp.64-66, 2004. http://www2.nict.go.jp/w/w114/stsi/ivstdc/news 25/pdf/tdcnews 25.pdf
- [4] Kondo, T., Y. Koyama, H. Takeuchi, and M. Kimura, Development of a new VLBI sampler unit (K5/VSSP32) equipped with a USB 2.0 interface, *IVS 2006 General Meeting*, Jan. 2006.
- [5] http://www2.nict.go.jp/w/w114/stsi/K5/VSSP/index-e.html


# K5 observing and correlation system

Kensuke Kokado Geospatial Information Authority of Japan

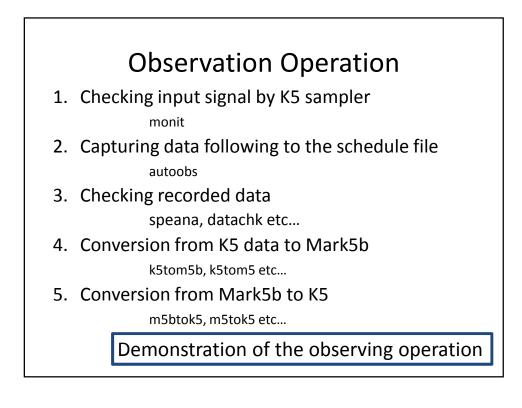


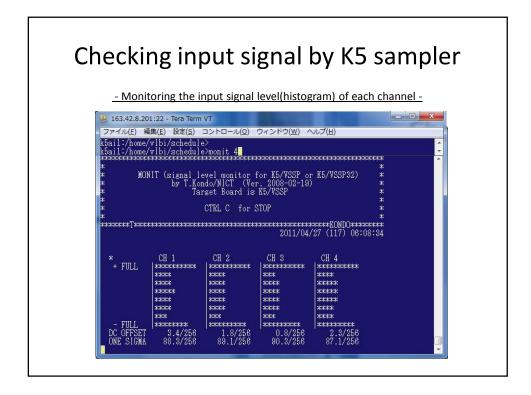

- What is K5 system (K5/VSSP and K5/VSI)
- K5 data format
- Observing operation with K5/VSSP32
- Software correlation by K5/VSSP programs
- Distributed Processing

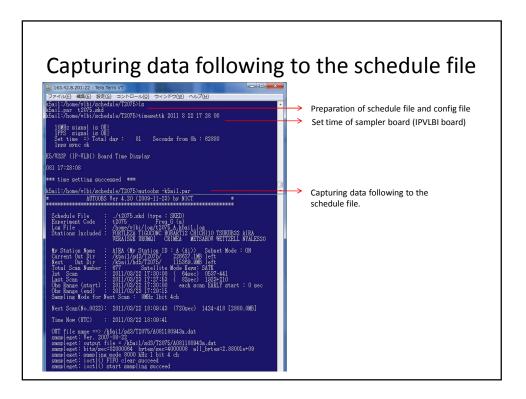


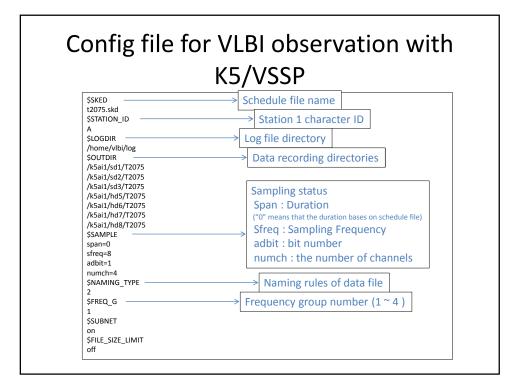


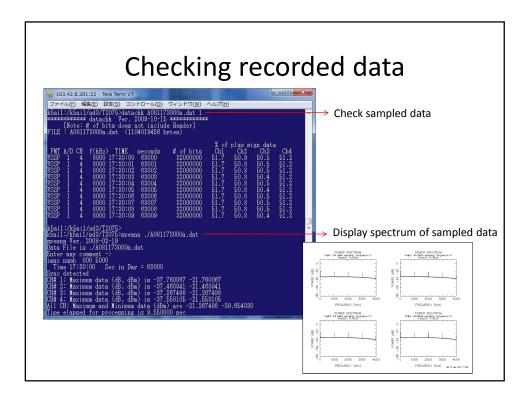


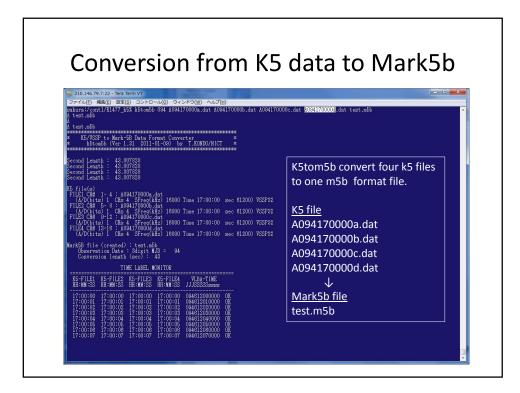


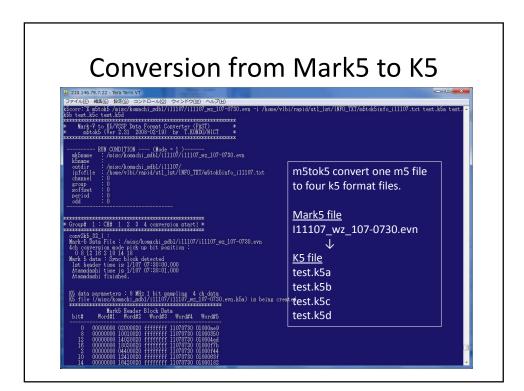


| Sampling Freq. (MHz)       | 0.04, 0.1, 0.2, 0.5, 1,<br>2, 4, 8, 16 | 0.04, 0.1, 0.2, 0.5, 1, 2<br>4, 8, 16, 32, 64 |
|----------------------------|----------------------------------------|-----------------------------------------------|
| Built-in digital LPF(MHz)  |                                        | 2, 4, 8, 16, through                          |
| Analog Input range         | -1V - +1V                              | -1V - +1V                                     |
| Analog Bandwidth of A/D    | 100MHz                                 | 300MHz                                        |
| AD resolution bit          | 1,2,4,8                                | 1,2,4,8                                       |
| No. of Channels per unit   | 1,4                                    | 1,4                                           |
| Maximum data rate per unit | 64Mbps                                 | 256Mbps                                       |
| DC offset adjustment       | NA                                     | Available from host PC                        |
| Reference signal input     | 1PPS, 10MHz                            | 1PPS, 10MHz or 5MHz                           |
| Data Interface             | PCI bus                                | USB 2.0                                       |

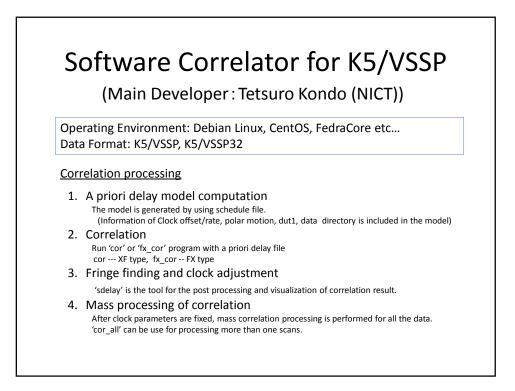

# List of utility programs for K5/VSSP


| #  | Command                                                                                         | Funciton Description                                                        |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | Sampler Dependent Software<br>(driver for K5/VSSP or K5/VSSP32 sampler must be installed first) |                                                                             |  |  |  |  |  |  |  |
| 1  | signalcheck                                                                                     | check reference and 1PPS signals supplied to a sampler                      |  |  |  |  |  |  |  |
| 2  | timesettk                                                                                       | set time of a sampler                                                       |  |  |  |  |  |  |  |
| 3  | timeadjust                                                                                      | adjust time of a sampler by 1 sec step                                      |  |  |  |  |  |  |  |
| 4  | timedisp                                                                                        | display time of a sampler                                                   |  |  |  |  |  |  |  |
| 5  | timesync                                                                                        | synchronize sampler time to 1PPS signal                                     |  |  |  |  |  |  |  |
| 6  | sampling                                                                                        | triger sampling start and acquire data                                      |  |  |  |  |  |  |  |
| 7  | sampling2                                                                                       | as same as "sampling" but higher functional capability                      |  |  |  |  |  |  |  |
| 8  | autoobs                                                                                         | perform automatic observation using a sampler                               |  |  |  |  |  |  |  |
| 9  | monit                                                                                           | monitor input signal level of a sampler with sampler time                   |  |  |  |  |  |  |  |
| 10 | monit2                                                                                          | monitor occurence of error of a sampler for initial checking                |  |  |  |  |  |  |  |
| 11 | setdcoffset                                                                                     | set DC offset of a K5/VSSP32 sampler                                        |  |  |  |  |  |  |  |
| 12 | pctimeset                                                                                       | set host PC time using sampler time                                         |  |  |  |  |  |  |  |
| 13 | timesetpc                                                                                       | set sampler time using host PC time (for checking)                          |  |  |  |  |  |  |  |
| 14 | timecheck                                                                                       | check false operation in time reading from a sampler (for initial checking) |  |  |  |  |  |  |  |

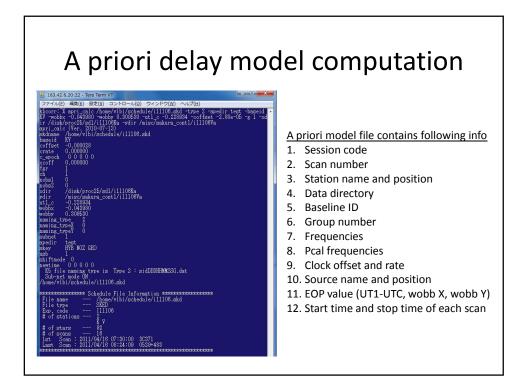

| -+- | af ut       | ility programs for K5/V                                                                                  |
|-----|-------------|----------------------------------------------------------------------------------------------------------|
| Σ   | UI UL       | inty programs for KJ/v                                                                                   |
|     |             | <i>/ · · · · · · · · · ·</i>                                                                             |
| #   | Command     | Funciton Description                                                                                     |
|     |             | Sampler Independent Software                                                                             |
| 15  | datachk     | check sampled data.                                                                                      |
| 16  | speana      | display spectrum                                                                                         |
| 17  | speana2     | display spectrum (higher functional capability)                                                          |
| 18  | skdchk      | check an observation schedule                                                                            |
| 19  | extdata     | extract data from a sampled data file and output as an aschii file                                       |
| 20  | four2one    | convert data file format from 4ch mode to 1ch mode                                                       |
| 21  | datacut     | extract data for a given period from a data file                                                         |
| 22  | adbitconv   | convert AD bit resolution of a sampled data file                                                         |
| 23  | one2four    | combine 4 1-ch data files to a 4-ch data file                                                            |
| 24  | data_half   | half the samplig frequency by thinning sampled data                                                      |
| 25  | data_double | double the sampling frequency by repeat a sample twice                                                   |
| 26  | k5v32tok5   | convert K5/VSSP32 format data to K5/VSSP format                                                          |
| 27  | k5tok5v32   | convert K5/VSSP format data to K5/VSSP32 format                                                          |
| 28  | data_recov  | recover K5/VSSP and K5/VSSP32 data header                                                                |
| 29  | vssplogana  | analyze a log file of "sampling" or "autoobs" and a summary file of<br>"datachk"                         |
| 30  | aux_recov   | recover an auxiliary field of K5/VSSP32 data header                                                      |
| 31  | pcalcheck   | monitor PCAL phase and amplitude in a K5/VSSP or K5/VSSP32 data<br>file (recommended graphics is PGPLOT) |
|     | Form        | nat Converter between K5 and Mark5 (Version 2009-02-17)                                                  |
| 35  | k5tom5      | convert K5VSSP or K5/VSSP32 format to Mark5 format                                                       |
| 36  | m5check     | analyze Mark5 format data, and display header block without sync<br>check                                |
| 37  | m5time      | display time label in Mark5 format data                                                                  |
| 38  | m5tok5      | convert Mark5 format to K5/VSSP format                                                                   |
| 39  | m5vex ana   | analyze a VEX schedule file                                                                              |

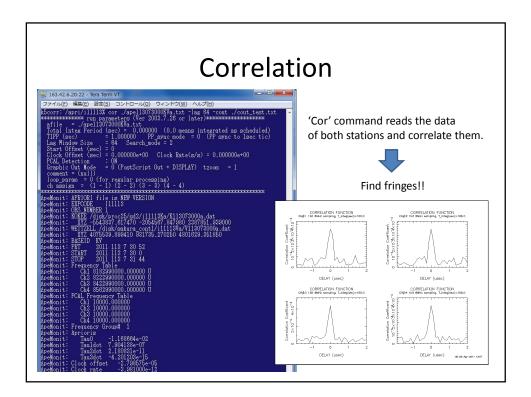


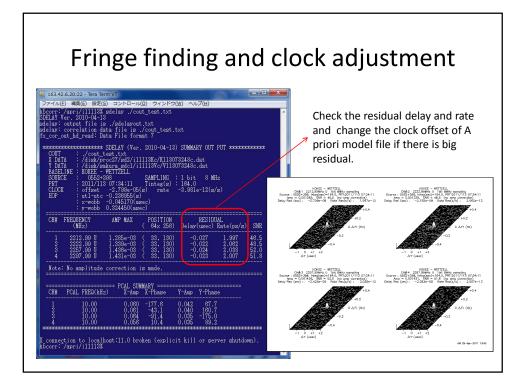



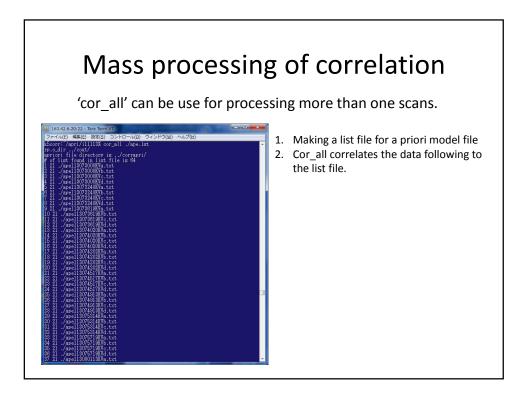



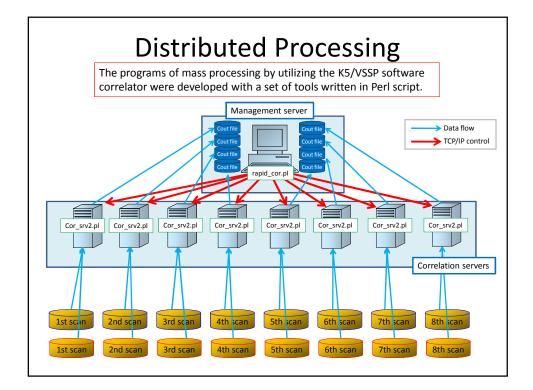




| Software list                         |                                                                                                                    |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Command name                          | Discription                                                                                                        |  |  |  |  |
| apri_calc                             | A priori parameter calculation (both standard schedule file and VEX file are supported)                            |  |  |  |  |
| cor                                   | Software correlator dedicated to 1 bit sampling data processing                                                    |  |  |  |  |
| cor_all                               | "cor" for two or more scan data                                                                                    |  |  |  |  |
| fx_cor                                | General purpose software correlator                                                                                |  |  |  |  |
| fx_cor_all                            | "fx_cor" for two or more scan data                                                                                 |  |  |  |  |
| sdelay                                | Coarse fringe search (2nd order search, fringe phase and amp plot, PCAL phase and amp plot were newly implemented) |  |  |  |  |
| Demonstration of the correlation work |                                                                                                                    |  |  |  |  |

