Mark5 OS & Software Development

Chester “Chet” Ruszczyk
chester@haystack.mit.edu
Objective

• State of Mark5’s OS
• Mark5A/B Application Software
 – SDK9
 – Version Info
• Maintenance
• Mark5C Software / Status
State of Mark5’s OS

• Debian Lenny and Squeeze (under test)
 – Latest OS distribution supported
 – Linux kernel 2.6.26 (lenny) 2.6.32 (squeeze)
 – Requires Conduant SDK9.X

• Debian Etch
 – Latest OS distribution no longer supported
 – Last patch available on Jan 2011
 – Required for real-time e-VLBI
 • More on this in a few slides
State of Mark5’s OS

• Why have sites upgraded their OS’s
 – Security concerns / maintainability
 • Mark5 is connected to a network
 – Performance improvements
 • Linux kernel network stack improvements
 – Network interface cards (NICs) support
 » 1 Gbps / 10 Gbps NIC
 • Other subsystems
 – Disk
 – Raid, etc
 – New motherboard support
 • Old distributions do not support chipsets
 – Bug fixes / capabilities Streamstor controller card
 • Large Module SATA support
Mark5 Application Software

• Mark5A application
 – Converted to support SDK9.2
 – Testing on Mark5A / 5B / 5B+
 – Notes
 • Mark5B and Mark5B+ application
 – DIMinio (case sensitive)
 » dimino will point to old software if installed
 – Match the latest command set supported
Mark5 Application Software

• Mark5A (cont)
 – e-VLBI bug
 • Disk2net no longer works
 – Under investigation
 – New version expected shortly
 – Mark5B+
 • errors with configuration of IO board
Mark5 Application Software

• What it is:
 – One debian package (NEW)
 • Mark5A/5B/5B+ application
 – mark5_2.3.1-i386.deb
 – Same code, post install script creates proper command to start application
 • streamstor_9.2.1-i386.deb
 – Installed / maintained through a standard package manager
 • synaptic (apt-get) / aptitude
 • dpkg
Upgrade Approach

• Debian mirror at Haystack
 – Crashed / replaced
 – Unavailable at this time

• For Mark5 systems
 – Download deb package from Haystack website
 • Note the distribution you are installing on
 – Perform following commands:
 • dpkg -i streamstor_9.2.1-i386.deb
 • dpkg -i mark5_2.3.1-i386.deb
Upgrade Approach (cont)

• For Mark 5B/5B+ systems
 – Perform following commands:
 • dpkg -i streamstor_9.2.1-i386.deb
 • dpkg -i mk5bio_1.0.6-i386.deb
 • dpkg -i mark5_2.3.1-i386.deb
SDK 9.2 Upgrade

• New method to updated firmware for newer controller cards
 – ssflash -u sdk9.2.ssf
 – For new controller cards Amazon
 • Mark5B+ systems
 – Handout in class for how after installing deb package to perform firmware upgrade
What’s Next

• Presently 1 stable Debian OS distro’s - Squeeze
• Support for Squeeze
 – thru May 2014
 – Debian supports second distribution for 1 year
 • After release of new distribution - Wheezy
 – Expected Weekend of May 4th / 5th
• Linux kernel 2.6.32 (Squeeze)
 – Not Mark5 Application dependent
 – Conduant / Jungo driver dependent
• 64 bit kernel support
 – Jungo / SDK dependent
 – Available with SDK9.3
 • Under test
SDK Information

<table>
<thead>
<tr>
<th>SDK Version</th>
<th>Shared Library version number</th>
<th>cc5A/cc5B linked library</th>
<th>Debian Package version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>libwdapi1110</td>
<td>-lwdapi1110</td>
<td>streamstor_9.3.1-i386.deb</td>
</tr>
<tr>
<td>9.2</td>
<td>libwdapi1031</td>
<td>-lwdapi1031</td>
<td>streamstor_9.2.1-i386.deb</td>
</tr>
<tr>
<td>9.1</td>
<td>libwdapi1021</td>
<td>-lwdapi1021</td>
<td>streamstor_9.1.0-i386 .deb</td>
</tr>
<tr>
<td>9.0</td>
<td>libwdapi1011</td>
<td>-lwdapi1011</td>
<td>streamstor_9.0.0-i386 (5c)</td>
</tr>
<tr>
<td>8.3beta</td>
<td>libwdapi1001</td>
<td>-lwdapi1001</td>
<td>streamstor_1.2.2-i386 .deb</td>
</tr>
<tr>
<td>8.3</td>
<td>libwdapi1001</td>
<td>-lwdapi1001</td>
<td>streamstor_1.2.1-i386.deb</td>
</tr>
<tr>
<td>8.2</td>
<td>libwdapi921</td>
<td>-lwdapi921</td>
<td>streamstor_1.1.4-i386.deb</td>
</tr>
<tr>
<td>8.1</td>
<td>libwdapi910</td>
<td>-lwdapi910</td>
<td>NA</td>
</tr>
<tr>
<td>7.6</td>
<td>libwdapi801</td>
<td>-lwdapi801</td>
<td>NA</td>
</tr>
<tr>
<td>6.X</td>
<td>libwdapi521</td>
<td>-lwdapi623</td>
<td>NA</td>
</tr>
</tbody>
</table>
Maintenance

• Recommend signing up for
 – debian-security-announce mailing list
 • http://lists.debian.org/debian-security-announce/
 – Informs the users about security problems by posting security advisories about “all” Debian packages on this list.

• Alternative
 – Update the package list weekly
 – Upgrade the required packages if any
Mark5 OS and e-VLBI

• Real-time eVLBI issues related to Mark5’s
 – Jive5A
 – Discovered by JIVE (Harro Verkouter)
 – At issue CPU usage over PCI bus transfers with small block size
 • Inhibits corner turning feature to maximize channel bandwidth
 – OS (kernel) / SDK9 dependent
 • Good OS: Debian Etch / Lenny
 • Bad OS: Debian Squeeze
Mark5C
Software

• DRS Version 0.9.9 official released
 – 2Gbps in 1 bank mode / 4Gbps in 2 bank mode
 – Mark5B / VDIF data support
 – Support hardware / software correlation

• DRS Version 0.9.14 under test
 • Address full disk bug
 • Presently requires drs restart
 • Other minor bugs in command set
 • Start up with out disk in system
Mark5C Software Utilities

• SDK 9.3 officially released
 – Verifying operations with DRS 1.0 release
• FuseMk5a has incorporated Mark5C functionality
• SSErase
 – 2 bank mode support?
 – Powers that be recommended against in case of error during conditioning
 – Added capability for write only test
• Difx support
 – Direct reading of disk modules in 2 bank mode??
 – With FuseMk5 initial path
Mark5C Features (cont)

• There is no 1pps
 – No timing or synchronization

• Recording starts immediately after command is issued
 – 2 Gbps there is not problem gating using the 5C
 • Note :
 – 50% probability to start on non-Mark5B header
 – scan_check problems
 – 4Gbps delayed response to record=off command
 • Daughter board is at max clocking capacity
packet – Set/get packet acceptance criteria

Command syntax: \texttt{packet = <DPOFST> : <DFOFST> : <length> : <PSN Mode> : <PSNOFST> ;}
Command response: \texttt{!packet = <return code> ;}
Query syntax: \texttt{packet? ;}

Purpose: Set / get the packet acceptance criteria.

Settable parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Allowed values</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><DPOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>0</td>
<td>payload byte offset from beginning of payload to first recorded data</td>
</tr>
<tr>
<td><DFOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>0</td>
<td>payload byte offset to beginning of recording</td>
</tr>
<tr>
<td><length></td>
<td>int</td>
<td>> 0</td>
<td>5008</td>
<td>number of bytes to record per packet (see Note 1)</td>
</tr>
<tr>
<td><PSN Mode></td>
<td>int</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><PSNOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>0</td>
<td>payload byte offset from beginning of payload to PSN (for PSN monitor mode 1 or 2)</td>
</tr>
</tbody>
</table>

Monitor-only parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Values</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><DPOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>payload byte offset from beginning of payload to first recorded data</td>
</tr>
<tr>
<td><DFOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>payload byte offset to beginning of recording</td>
</tr>
<tr>
<td><length></td>
<td>int</td>
<td>> 0</td>
<td>number of bytes to record per packet (see Note 1)</td>
</tr>
<tr>
<td><PSN Mode></td>
<td>int</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><PSNOFST></td>
<td>int</td>
<td>≥ 0</td>
<td>payload byte offset from beginning of payload to PSN (for PSN monitor mode 1 or 2)</td>
</tr>
</tbody>
</table>

Notes:

1. The length of data to be recorded must be a multiple of 8 bytes.
2. PSN-monitor 0 mode will disable packet serial number checking and record all data in the order received. PSN-monitor mode 1 will replace invalid packets with the specified fill pattern and guarantee order. PSN-monitor mode 2 will prevent packets from being written to disk if the most significant bit is set.
Mark5C Data Payload Definition and Parsing

Received 10G Daughter Board

- Ethernet Header
- Network Layer Payload
- FCS

Strips off the ethernet and FCS bytes

IP UDP VLBI Payload

PSN Mode 1 or 2

PSN Mode 0

IP UDP VLBI Payload

DPOFST VLBI Data Frame Recorded payload

- The “packet” command from the Mark5C command set specifies how to treat the incoming data:

\[
\text{packet} = \langle DPOFST \rangle : \langle DPOFST \rangle : \langle \text{length} \rangle : \langle \text{PSN Mode} \rangle : \langle \text{PSNOFST} \rangle;
\]

- DPOFST – Data payload offset – number of bytes into the received packet to find the start of the VLBI Data Frame.
- DPOFST – VLBI Data Frame offset – number of bytes to add to DPOFST to find the start of the data to be recorded.
- Length – VLBI Data Frame length in bytes
- PSN Mode –
 0 - “Does not” guarantee order or correct for missing packets, it simply records what is received in the order it is received.
 1 - Guarantees order and corrects for missing packets by inserting fill pattern by verifying the 32 bit PSN number
 2 - Guarantees order and corrects for missing packets by inserting fill pattern, but discards packets with the most significant bit of PSN being set to 1.
- PSNOFST – Packet Serial Offset – Since the PSN can be the first word in the VLBI Data Frame or embedded in a VLBI header (e.g. word 5 of the vdif header) specifies the number of bytes from DPOFST to locate the PSN.
Mark5C User Directory

• Is not backward compatible with 5A/5B

• Has support for
 – 5B data (0.9.9)
 – VDIF Data (0.9.9)
 • If there is a need for bank mode with VDIF support
 – an early version can be released

• New data structure
 – Describing the meta data of the scans recorded

• Impact is to hardware correlators
Field System Support

• When will the mark5C be integrated into the field system?
 – Under development / test
 – Normal operations expected June 2013
 • Mark5C commands
 • RDBE commands
 – Release for standard operations
 – After testing with broadband development system
Questions ?