RDBE Setup and Operations

Chet Ruszczyk

IVS 7th TOW 2013
Agenda

• System overview
 – Hardware components
 – Firmware components
 – Software components

• Features

• Command set

• Basic operation

• Demonstration
System Overview

• RDBE – ROACH Digital Backend System
 – Joint collaboration between NRAO and Haystack
 – Name is assigned to a specific base system
 • Specific hardware components
 • Can be ordered from Digicom
 – Variations are expected
 • Represented by hyphenating the name RDBE-X
 – X represents the hardware components of the RDBE
 • Presently there are RDBE-H, RDBE-S
 • This overview covers the RDBE-H
RDBE Hardware Components

• ROACH Board
 – Reconfigurable Open Architecture Computing Hardware
 – Developed by the CASPER group at Berkeley / NRAO / KAT

• Virtex 5 FPGA
• 440 PPC processor
• 2G RAM
• 2 ZDOK connectors
 – iADC
• RS232 interface
• 1G / 100M Ethernet
• 4 CX4 10G Ethernet ports
• 1 XPORT interface
RDBE Hardware Components

• iADC
 – Analog to Digital Converter (sampler board)
 • Developed by the CASPER group
 – 2GHz bandwidth
 – 1 Gigs sample / sec
 – 8 bits / sample
• 2 iADC cards supported per ROACH
RDBE Hardware Components

- Synthesizer / timing board
 - Developed NRAO
 - Inputs
 - 5MHz
 - 1pps
 - Outputs
 - 1pps
 - 1024 MHz
 - Provides serial communication interface to ALC board
RDBE Hardware Components

- **ALC**
 - Analog level control
 - Developed by NRAO
 - 2 IFs in / 2IFs out
 - 0-31 dB attenuator
 - Additional 20dB solar attenuator
RDBE Hardware Components

• Miscellaneous
 – Power supply
 • 90 ~ 132 VAC or 180 ~ 264 VAC auto sensing
 – 1pps LED
 • Indicates 1pps to synthesizer board
 – Power LED
 – 10 SMA connectors

RDBE-H Back Panel
RDBE Firmware

• 3 Personality types (FPGA code)
 – Polyphase filter bank-geodesy (PFBG) Version 1.4
 • Input is two 512MHz IFs
 • Output is sixteen of 32 possible 32-MHz channels
 • Output is a 5008 byte Mark5B data format (next slide)
 – Polyphase filter bank-astronomy (PFBA)
 • Input is four 512 MHz IFs
 • Output uses two of the four 10Gbps CX4 interfaces
 – 2-bit quantized
 – 4Gbps / interface
 – 8224 byte packets using the VDIF format.
RDBE Firmware

– Digital down converter (DDC)
 • Input is two 512MHz IFs
 • Output is four tunable channels
 • Bandwidths 128 / 64 / 64 / 64 / 1 MHz (same for all 4 channels)
 – Data rate proportional to bandwidth
 • Tunable in 15.625 kHz quanta (testing incomplete)
 • Output is in 5008 byte Mark5B format 2 bits / sample
 • 250-kHz common quantum with 10-kHz on legacy systems
Mark5B Payload

Original Mark5B packet

- Mark5B Header (4 words)
- 2500 32 bit words

RDBE Mark5B Equivalent

- Mark5B Header (4 words)
- 1252 32 bit words
- Zero Byte fill
- 32 bit PSN

- 1248 32 bit words
- Zero Byte fill
- 32 bit PSN

12th IVS TOW May 2013
RDBE Software
RDBE Software

• rdbe_dev.ko
 – Linux kernel device driver
 – Allows the application to read / write to the FPGA personality

• HAL
 – Hardware abstraction layer
 – Allows the personality to change without changing the application software

• rdbe_server
 – Version 1.15 will be required for operation with FS
 – Accepts VSI-S commands
 – Verifies and takes actions on valid commands
 – Specified in the RDBE command set
RDBE Command Set

- Standard VSI-S command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbe_1pps_mon</td>
<td>Set the 1pps monitoring broadcast state</td>
</tr>
<tr>
<td>dbe_alc</td>
<td>Set / get the ALC attenuator setting for INPUT 0/1</td>
</tr>
<tr>
<td>dbe_alc_pps?</td>
<td>Station 1pps status (query only)</td>
</tr>
<tr>
<td>dbe_alc_fpgavers</td>
<td>Get the ALC boards FPGA bit code version (query only)</td>
</tr>
<tr>
<td>dbe_arp</td>
<td>Set / get the IP to MAC address resolution</td>
</tr>
<tr>
<td>dbe_data_connect</td>
<td>Set / get the destination IP the data is being sent</td>
</tr>
<tr>
<td>dbe_data_format</td>
<td>Set the packet format mode to either the VDIF native mode or Mark5B compatibility mode</td>
</tr>
<tr>
<td>dbe_data_send</td>
<td>Transmit a data stream out of the DBE 10G interface</td>
</tr>
<tr>
<td>dbe_dc_cfg</td>
<td>Setup down-converters</td>
</tr>
<tr>
<td>dbe_dot?</td>
<td>Get the Data Observable Time (DOT) clock information (query only)</td>
</tr>
<tr>
<td>dbe_dot_inc</td>
<td>Increment the DOT clock</td>
</tr>
<tr>
<td>dbe_dot_set</td>
<td>Set the DOT clock on next 1pps tic</td>
</tr>
<tr>
<td>dbe_execute</td>
<td>Execute specific command on the DBE</td>
</tr>
<tr>
<td>dbe_hw_version?</td>
<td>Get the hardware version information from the DBE</td>
</tr>
<tr>
<td>dbe_ifconfig</td>
<td>Set / get DBE 10G network interface configuration</td>
</tr>
<tr>
<td>dbe_ioch_assign</td>
<td>Set / get the input to output channel assignments</td>
</tr>
<tr>
<td>dbe_packet</td>
<td>Set / get packet transmission criteria</td>
</tr>
<tr>
<td>dbe_personality</td>
<td>Set / get the RDBE FPGA bit code personality</td>
</tr>
<tr>
<td>dbe_quantize</td>
<td>Set / get present channel quantization data</td>
</tr>
<tr>
<td>dbe_status?</td>
<td>Get system status (query only)</td>
</tr>
<tr>
<td>dbe_sw_version?</td>
<td>Get the software version information from the DBE</td>
</tr>
<tr>
<td>dbe_tsys_mon</td>
<td>Set the Tsys monitoring broadcast state</td>
</tr>
<tr>
<td>dbe_xbar</td>
<td>Set / get the DDC crossbar switch positions</td>
</tr>
</tbody>
</table>
Basic Operations

• Topics addressed on the following slides
 – Boot Up
 – rdbe_server daemon communication
 • dbe_data_send operational modes
 • raw capture mode
 • monitoring capabilities
 – 1pps
 – tsys
 – Software utilities
Boot Up

- **U-Boot options**
 - Environment variables defining what the boot loader will execute
 - location of the kernel in flash (address)
 - location of the root file system
 - USB
 - NFS
 - SDRAM
 - bootp
 - Network configuration
 - Static
 - Dynamic
 - Details are beyond the scope of this talk
 - Detail documentation available if needed
rdbe_server

- Loading the FPGA personality
 - Located where the root file system is mounted
 - /home/roach/personalities

- Initialization
 - Setting the FPGA registers
 - Setting the DOT time
 - system time
 - manually
 - Quantization
 - Formats the filter bank channels at 2 bits / sample
 - Monitoring capabilities

- Set for normal operations
 - Transmitting data out CX4 interface
 - Status / etc.
IO Channel Assignment

• Capability to set the input output channel assignment for the VLBI Payload
 – Feature for PFBG personality only
 • Input is two 512MHz IFs
 • Output is sixteen of 32 possible 32-MHz channels
 – The command
 • dbe_ioch_assign = <input>:<channel(s)>: [<threadID>] : ...
 [<input>]:[<channel(s)>]: [<threadID>] ;
 • input
 – 0 or 1 for IF0 or IF1
 • channel(s)
 – Either individual channels or a range of channels
 • threadID
 – vdif specific and presently ignored
IO Channel Assignment

• The channel ordering
 – Directly related to the assignment combination
 • input and channel specified in this command
 – The present geodetic personality
 • dbe_ioch_assign? returns
 – with the first input / channel combination 0:1
 – assigned to the least significant position in the data array format (bit 0,1)
 – the most significant bits being assigned to input 1 channel 15
IO Channel Assignment

- A common setting used for testing with DBBC
 - `dbe_ioch_assign = 0: 0-15 ;`
 - Assigns all of IF0s 32 MHz channels to the VLBI Payload
 - `dbe_ioch_assign?` returns
 - `dbe_ioch_assign ? 0: 0:1: : 0:2: :0:3::0:4::...0:14: :0:15: ;`
 - with the first input / channel combination 0:1
 - assigned to the least significant position in the data array format (bit 0,1)
 - the most significant bits being assigned to input 0 channel 15
Data Transmission

• In the past data were always available and the gating function was performed on the recording device
 – Record = on / off commands

• A new approach has been taken for when to transmit data out of the interface
 – Since the start and end time are known apriori
 • use the dbe_data_send to gate the output on the 10G
 • past option is still available
Design Philosophy

• start time <= present DOT time < end time
 – Personality will transmit valid packets
 – Times are specified as integer seconds

• Start and end times are programmed into the FPGA using the command:
 – dbe_data_send
 – command format
 • dbe_data_send = < state > : [< ts >] : [<te>] : [<delta>];
 – state - either “on” or “off”
 – start and end times (ts, te) are of the format YYYYDDDHMMSS
 – delta - specified in integer seconds.
dbe_data_send options

- Specify start / end time
 - YYYYDDDDHHMMSS
- Or specify start and delta time
 - t2 is generated as t1 + delta
 - delta is integer seconds

- Ability to abort an active transmission
 - send the off state with
 - a specified time
 - no time - meaning next integer second
Raw Capture Mode

• Provides ability to see the incoming signal from the iADC before it is processed by the FPGA personality

• It is a separate thread within the rdbe_server
 – Listening on port 5000
 – Responds to a client requesting a specific IF to capture
 • 32000 samples are captured
 • the raw data are returned to the calling client to be processed
 – by software utility “bpplotter”
 » developed by NRAO
bpplotter
bpplotter
Monitoring Capabilities

• 1pps monitoring
 – dbe_1pps_mon = <enable> : <multicast IP address> : <port>;
 – Use gDot.py on a system attached to same network to receive multicast data

• Tsys monitoring (version 1.4 of fpga code)
 – System temperature measurement
 – On power / off power of the receive chain
 – dbe_tsys_mon = <enable> : <multicast IP address> : [<port>] : [<interval>];
 • default interval is 6 secs
 • tsys data is summed every second
 – dbe_tsys_diode_ctl must be set to use above function
 – Use tsys.py for gathering data
Software Utilities

• **rbde_client -h <machine>**
 – Command line interface to RDBE
 – `-h <machine>` is the target RDBE systems IP address (defaults to localhost).
 – **rdbe_server** must be running on `<machine>`

• **rdbe_gui**
 – Graphical client interface to the RDBE
Software Utilities

- **gDot -h <multicast address>**
 - A graphical multicast 1pps time receiver
 - that displays the broadcast DOT time
 - The RDBE server must be configured
 - with the dbe_1pps_mon command.

- **power_est_client -h <machine>**
 - A command line client
 - calculates the mean, standard deviation and maximum power of a specified input IF into the RDBE.
 - the input IF is selected by sending a 0 or 1 at the command prompt.
DEMONSTRATION
TIME PERMITTING