Westford Antenna

Michael Poirier

Abstract

Technical information is provided about the antenna and VLBI equipment at the Westford site of Haystack Observatory, and about changes to the systems since the 2000 IVS Annual Report.

1. Westford Antenna at Haystack Observatory

Since 1981 the Westford antenna has been one of the primary geodetic VLBI sites in the world. Located ~70 km northwest of Boston, Massachusetts, the antenna is part of the MIT Haystack Observatory complex.

Figure 1. The radome of the Westford Antenna.

The Westford antenna was constructed in 1961 as part of the Lincoln Laboratory Project West Ford that demonstrated the feasibility of long-distance communication by bouncing radio signals off a spacecraft-deployed belt of copper dipoles at an altitude of 3600 km. In 1981 the antenna was converted to geodetic use as one of the first two VLBI stations in the National Geodetic Survey Project POLARIS. Westford has continued to perform geodetic VLBI observations on a regular basis since 1981. Westford has also served as a test bed in the development of new equipment and techniques now employed in geodetic VLBI worldwide. Primary funding for geodetic VLBI at Westford is provided by the NASA Space Geodesy Program.
Table 1. Location and addresses of Westford antenna.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>71.49° W</td>
</tr>
<tr>
<td>Latitude</td>
<td>42.61° N</td>
</tr>
<tr>
<td>Height above m.s.l.</td>
<td>116 m</td>
</tr>
<tr>
<td>MIT Haystack Observatory Off Route 40 Westford, MA 01886-1299 U.S.A.</td>
<td>http://www.haystack.mit.edu</td>
</tr>
</tbody>
</table>

2. Technical Parameters of the Westford Antenna and Equipment

The technical parameters of the Westford antenna, which is shown in Figure 2, are summarized in Table 2. The antenna is enclosed in a 28-meter-diameter, air-inflated radome made of 1.2-mm-thick, Teflon-coated fiberglass – see Figure 1. When the radome is wet, system temperatures increase by 10–20 K at X-band and by a smaller amount at S-band. The major components of the VLBI data acquisition system are a Mark IV electronics rack, a Mark IV tape drive, which is used for recording thin tapes only, and a Pentium-class PC running PC Field System version 9.4.12. The primary frequency and time standard is the NR-4 hydrogen maser. A CNS Clock GPS receiver system provides independent timing information and comparisons between GPS and the maser.

Figure 2. Wide-angle view of Westford antenna inside the radome. The VLBI S/X receiver is located at the prime focus. The subreflector in front of the receiver is installed when observing with the TAL receiver (see Section 4), which is located at the Cassegrain focus.
Table 2. Technical parameters of the Westford antenna for geodetic VLBI.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Westford</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary reflector shape</td>
<td>symmetric paraboloid</td>
</tr>
<tr>
<td>primary reflector diameter</td>
<td>18.3 meters</td>
</tr>
<tr>
<td>primary reflector material</td>
<td>aluminum honeycomb</td>
</tr>
<tr>
<td>S/X feed location</td>
<td>primary focus</td>
</tr>
<tr>
<td>focal length</td>
<td>5.5 meters</td>
</tr>
<tr>
<td>antenna mount</td>
<td>elevation over azimuth</td>
</tr>
<tr>
<td>antenna drives</td>
<td>electric (DC) motors</td>
</tr>
<tr>
<td>azimuth range</td>
<td>$90^\circ - 470^\circ$</td>
</tr>
<tr>
<td>elevation range</td>
<td>$4^\circ - 87^\circ$</td>
</tr>
<tr>
<td>azimuth slew speed</td>
<td>3° s$^{-1}$</td>
</tr>
<tr>
<td>elevation slew speed</td>
<td>2° s$^{-1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X-band system</th>
<th>S-band system</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency range</td>
<td>8180-8980 GHz</td>
<td>2210-2450 GHz</td>
</tr>
<tr>
<td>T_{sys} at zenith</td>
<td>50-55 K</td>
<td>70-75 K</td>
</tr>
<tr>
<td>aperture efficiency</td>
<td>0.40</td>
<td>0.55</td>
</tr>
<tr>
<td>SEFD at zenith</td>
<td>1400 Jy</td>
<td>1400 Jy</td>
</tr>
</tbody>
</table>

Westford also hosts the WES2 GPS site of the IGS network. A Dorne-Margolin GPS antenna is located on top of a tower ~60 meters from the VLBI antenna, and an Ashtech Z-Surveyor receiver acquires the GPS data. A meteorology package provided by the NOAA Forecast Systems Laboratory continually logs meteorological data, which are downloaded daily and are available from the IGS and cignet archives.

3. Westford Staff

The personnel associated with the VLBI program at Westford and their primary responsibilities are:

- John Ball: pointing system software
- Joe Carter: antenna controls
- Brian Corey: VLBI technical support
- Ellen Lautenschlager: observer
- Glenn Millson: observer
- Michael Poirier: site manager; chief observer
- Alan Whitney: site director

4. Status of the Westford Antenna

Westford participated regularly in the CORE-1, CORE-3, IRIS-S, RD-VLBA, Cont-M, and Neos-A series of geodetic experiments, as well as fringe tests, and various ad hoc experiments. During the period 2001 January 1 - 2001 December 31, Westford participated in a total of 72 24-hour geodetic experiments. Upgrades to the antenna and VLBI systems over the same time
period included completion of the 19-bit encoder upgrade in both azimuth and elevation. This has allowed more precise positioning feedback and control of the antenna.

There have been no significant equipment failures during this operational period.

Use of the Westford antenna is shared with the Terrestrial Air Link (TAL) Program operated by the MIT Lincoln Laboratory. In this project Westford serves as the receiving end on a 42-km-long terrestrial air link designed to study atmospheric effects on the propagation of wideband communications signals at 20 GHz.

5. Outlook

We anticipate Westford will be able to participate in all 68 experiments that are scheduled for Westford in 2002.