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Abstract

The VLBI nutation series from GSFC and the USNO, now both in excess of 23 years in length,
allow the exploration of the temporal behaviour of the retrograde (RFCN) and prograde (PFCN) free
core nutations.

Our analysis implements Singular Value Decomposition to solve the least squares problem of fitting
the Discrete Fourier Transform to the non-equispaced VLBI nutation observations. A novel feature
of our procedure is to use the Parseval relation to determine the number of singular values of the
coefficient matrix to be eliminated.

We report the observation for the first time of the prograde mode predicted by Jiang (1993). We
find periods of —417 + 5 and —413 £+ 4 days for the retrograde mode and 388 £+ 2 and 387 + 5 days for
the prograde mode. Spectral analyses at 500 day intervals down the two records show the RFCN in
both the GSFC and USNO data to be in free ring down. The PFCN in the GFSC series appears to be
in a similar free ring down. The PFCN in the USNO series does not show similar behaviour, possibly
because it is at the noise level.

Free decay of the nutation modes allow the direct measurement of the viscosity at the top of the
core. We find a value of 795 Pa - s in contrast to the commonly cited value of 0.008 Pa - s found by
Gans (1972) by the extrapolation of laboratory measurements.

1. Introduction

Earth’s outer liquid core is capable of nearly rigid-body rotations relative to the shell (mantle
and crust). Although the motions are mainly confined to the core (Jiang, 1993), conservation of
angular momentum produces very small nutations of the rotation axis in space. The theoretical
possibility of such motions has a long history (Rochester, Jensen and Smylie, 1974), going back to
the classical literature. Only with the emergence of the VLBI technique (Rogers et al., 1983), in
providing a close approximation to an inertial space frame, have these motions been brought into
the realm of observation (Herring, Mathews and Buffet, 2003).

The VLBI nutation observations are inherently non-equispaced, since measurements can only
be made when the radio sources are visible. Working in the frequency domain, we find the Discrete
Fourier Transform (DFT) of the non-equispaced record by minimizing an objective function that
weights the error power between the DFT and the measured values in inverse proportion to the
squares of their standard errors. The Singular Value Decomposition (SVD) method (Golub and
van Loan, 1989) is used in solving the resulting large least squares system of conditional equations.
An innovation in our application of the SVD technique is the use of the Parseval relation in
determining the number of singular values to be eliminated.

The long VLBI nutation series, now in excess of 23 years, allows us to explore the temporal
behaviour in the frequency domain of both free core nutations. We discover that they are in free
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ring down. This opens the possibility of an accurate measure of the viscosity just below the core-
mantle boundary. Since the motion there is largely a rotational shear, simple Ekman boundary
layer theory permits the decay rates to be directly related to viscosity.

2. Fourier Analysis in the Non-Equispaced Case

When the time sampling is uneven and g; samples are at arbitrary times ¢;, we make a least
squares fit, g7, of (2L + 1) points to the sum
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where N < L. The (2N + 1) values of Gy, once calculated, give a frequency domain representation
that is equispaced with sample interval Af = 1/M.

The VLBI nutations series have accompanying standard errors o;. If the error series in the
representation is €; = g; — g;, we fit to the G that minimize the objective function
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where the superscript asterisk indicates complex conjugation. The resulting conditional equations
are
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Although the coefficient matrix in the system of equations (3) is equidiagonal and Hermitean,
and therefore of Toeplitz form, the Levinson algorithm is found inadequate for their solution even
when implemented in double quad precision (Hida, Lee and Bailey, 2000). Instead, we employ the
method of Singular Value Decomposition (SVD) considered in the next Section.

3. Singular Value Decomposition and Parseval’s Theorem

The reason for the failure of the Levinson algorithm, when applied to the solution of the system
(3), is that the coefficient matrix for large N is nearly singular (Lawson and Hanson, 1974). The
DFT values are typically very large, and the representation (1) of the original time sequence always
has isolated values greatly in error. For such large, least squares systems, there is a wide range of
literature which suggests the application of Singular Value Decomposition (Press et al., 1992, Chs.
2 and 15).

In matrix notation, the system (3) is C- G = d. In SVD, the matrix C is factored into the
triple product C = U-W - V*'. U and V are unitary matrices and W is a diagonal matrix with
the singular values of C in descending order down the diagonal. In our analysis, we represent the
position of the celestial pole as the complex valued sequence g;. The system (3) is then complex
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as are the unitary matrices U and V. The singular values and W are real as a consequence of the
Hermitean symmetry of C. We have implemented algorithm 358 of Businger and Golub (Businger
and Golub, 1969) for the SVD of a complex matrix in both double and quadruple precision.
Since the unitary matrices U and V have inverses which are the complex conjugates of their
transposes, the factored form of C allows the solution to be written G =V - W~ 1. U*T . d.
Implementation of the SVD procedure involves the inverses of the smallest singular values in
W ! being set to zero, giving a modified diagonal matrix W'~!. This leads to an approximate
DFT, G/, such that the residual error vector in the solution is minimized in length (Press et al.,
1992, pp. 53-56). G’ is found as the product of a matrix and a vector as G' = VW'~ . U*Td.
The main difficulty in implementing the SVD procedure, as described in the existing literature,
is choosing the number of singular values to discard. Our solution to this problem is to use
the Parseval relation between the mean square in the time domain and the mean square in the
frequency domain. Before any singular values are discarded, the DFT is many orders of magnitude
too large. As the smallest singular values are discarded, its magnitude decreases monotonically
until the Parseval relation is closely satisfied.
The sinusoids in the representation (1) are orthogonal in addition over equispaced time sample
points, yielding the Parseval relation in the discrete case,

1 L
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The left hand side of this expression is just the power in the time domain signal. For stationary
sequences it is E{g; g;-*}, the expected value of the mean square in the time domain. In the case
of stationary sequences, the expected value of the mean square will be independent of whether or
not the sampling is equispaced or non-equispaced. For stationary sequences, the Parseval relation
holds for both cases.

Our procedure then is to discard the smallest singular values in W ! until the Parseval ratio
R given by
(AF)’ TNy GiG;

R =
E{g;9}'}

(6)

is closest to unity.

4. Spectral Analysis of the GSFC and USNO Nutation Series

The Goddard Space Flight Center (GSFC) nutation series were extracted from the file
2003b.eops on their website (http://gemini.gsfc.nasa.gov/solutions/2003b/2003b.eops). The file
contains the residuals in longitude, A, and obliquity, Ae, compared to the IAU 1980 nu-
tation series, and their standard errors, in milliarcseconds. The series runs from Julian day
2,444,089.993750 (August 3, 1979) to Julian day 2,452,705.270139 (March 6, 2003) and con-
sists of 3369 points. Tests reveal that four of the points have null values and 23 have identical time
tags. The former were removed and the values of the latter were averaged with weights in inverse
proportion to the squares of their standard errors. A series of 3,342 points were left for analysis.

Nutation series from the United States Naval Observatory (USNO) were extracted from the
file usn2002c.eops obtained by anonymous ftp (ftp://cddisa.gsfc.nasa.gov/vlbi /ivsproducts/eops).
Again residuals in longitude and obliquity compared to the TAU 1980 nutation series are provided,
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along with standard errors in milliarcseconds. The series runs from Julian day 2,444, 089.993750
(August 3, 1979) to Julian day 2,452,719.269444 (March 20, 2003) and consists of 2,944 points.
Fifteen of the points were found to have identical time tags and these were again averaged with
weights in inverse proportion to the squares of their standard errors. A series of 2,929 points were
left for analysis.

Before performing spectral analysis on these two series, they were first converted to series in
the Cartesian coordinates of the celestial pole, x = At sine, where € is the obliquity with sine
0.39777716, and y = A€, with corresponding conversion of the standard errors. Linear trends and
18.6 yr (6,798.58 d), 9.3 yr (6,798.58/2 d), annual (365.2597 d) and semi-annual (365.2597/2 d)
periodic terms were then removed by least squares fits. Spectral analyses were performed on the
residuals of the complex valued series of positions of the celestial pole, g; = x; + iy;.

The GSFC series covers a time span of 8,615.276d. The total record length was taken as 8,617d
and it was divided into four segments of length M = 4,924d with 75% overlap. The USNO series
covers a time span of 8,629.276d and was divided into four segments of length M = 4,932d, again
with 756% overlap. Before the DFTs of the segments were calculated, they were windowed for
—M/2 <t < M/2 with a Parzen window to suppress finite record effects.

Power spectral estimates were calculated as the average over the four segments, for each series,
of the squared magnitudes of the DFTs, normalized by division with the integral of the square of
the Parzen window (Smylie, Hinderer, Richter and Ducarme, 1993). They are shown plotted in
Figure 1.
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Figure 1. Average spectral estimates of the free core nutation modes. Those for Goddard Space Flight
Center data are shown on the left, while those for data from the United States Naval Observatory are
shown on the right.

Parameters for the Retrograde Free Core Nutation (RFCN) and the Prograde Free Core Nu-
tation (PFCN) were recovered by fitting resonances of the form

A2

14402 (L) "

Recovered parameters are listed in Table 1.
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Table 1. Fitted parameters of the RFCN and PFCN resonances in the average spectral estimates of the
GSFC and USNO series shown in Figure 1.

RFCN
A? (mas®/cpd)  fo (1073cpd) Period(days) Q
GSFC 122.44 -2.39773 -417.061 6.4263
USNO 135.46 -2.42368 -412.596 5.4113
PFCN
GSFC 22.932 2.57627 388.158 5.7932
USNO  22.547 2.58356 387.063 5.8856

The power spectral estimates for each segment were based on DFTs calculated by Singular
Value Decomposition, eliminating the smallest singular values until the Parseval ratio R, defined
in expression (6), is as close as possible to unity.

5. Poinsot Representation of Nutations and Wobbles

In the Earth frame, free core nutation modes have an associated nearly diurnal retrograde
wobble. The relation between nutation and wobble is best understood by the Poinsot construction.
In the case of the RFCN, a small body cone rolls, without slipping, once per sidereal day on the
inside of a large space-fixed cone, as illustrated on the left of Figure 2. The PFCN can be described
by a small body cone rolling, without slipping, once per sidereal day on the outside of a large space-
fixed cone, as illustrated on the right of Figure 2.

The kinematics of the wobble-nutation modes, illustrated by the Poinsot constructions, allow
the amplitudes and Q’s to be related by

space—fixed invariable axes

/ reference axes \

\

7~/body cone .

| rotation axes |

y |

Space cone

Figure 2. Poinsot constructions for the RFCN (left) and the PFCN (right).

fNo

aw = *————an,
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and
fNo - 1/Ts
fNo
with the positive sign referring to the RFCN and the negative sign referring to the PFCN.
The wobble and nutation frequencies are related by fiyr = fxy — 1/Ts. The wobble period Ty
and the nutation period Ty are related by

Qw ==+ Qn, 9)

TNT,
Tow = ———— . 1
Ul (10)

Estimates of the squares of the nutation and wobble amplitudes can be made from the peak spectral
densities A%, and A%, returned from fits to the resonances of the form (7), by integrating between
half-power points. The estimates of the squares of the amplitudes are then

o = FrAX fn/ (2Qn) and afy = —wAYy, fwo/ (2Qw) (11)

Amplitudes, periods and @’s for the average spectral estimates shown in Figure 1, as calculated
by the foregoing relations, are listed in Table 2.

Table 2. Parameters recovered for the average spectral estimates shown in Figure 1.

RFCN
an (parcseconds) Ty (days) aw (parcseconds) Tw (days) Qn Qw
GSFC 267.881 -417.061 0.63902 -0.994891  6.4263 2,693.9
USNO 308.711 -412.596 0.74437 -0.994865  5.4113 2,244.2
PFCN
GSFC  126.566 388.158 0.32602 -0.999839  5.7932 2,249.0
USNO 124.686 387.063 0.32208 -0.999846  5.8856 2,278.5

6. Decay of the Free Core Nutation Modes and Viscosity at the Top of the Core

Spectral densities of the four individual segments entering the average spectral density shown
in Figure 1 suggest the modes are in free ring down.

In order to examine the temporal behaviour more fully, we have divided the GSFC and USNO
nutation series into 2,000 day segments advancing down the time axis in 500 day steps. Spectral
analyses were performed on each of the 14 segments for each series by Singular Value Decompo-
sition, using the Parseval criterion to determine the number of singular values to be eliminated.
Average spectral estimates were made, based on each of four successive segments with 75% overlap.
Before the analysis of each segment, the series were windowed with a Parzen window. The result
was 11 spectral estimates for each series, centered at 1,750 days into the record and at 500 day
increments down the time axis thereafter. Fits to the RFCN and PFCN resonances of the form
(7) were used to recover amplitudes through expression (11).

In free decay, the nutation amplitude follows the exponential decay scheme

an = anye ™ (@NTN), (12)
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with an, denoting the amplitude at time ¢ = 0. On taking logarithms of both sides, if the mode is
in free decay, we obtain the linear function of time, logay = ct +d, with ¢ = —wloge/ (QnTN) =
—loge/T, d = logan,, t12 = 7In2, where 7 is the e-folding time and %/ is the half life of the
decay. Plots of log ax as functions of time for both nutation modes of the GSFC and USNO series
are shown in Figure 3.
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Figure 3. Logarithm of the amplitudes of the free core nutations as functions of time. The upper left plot
shows the RFCN from the GSFC series while the upper right plot is that for the RFCN from the USNO
series. The lower plots show the results for the prograde mode. Lower left is that for the PFCN from
the GSFC series and the lower right plot is for the PFCN from the USNO series. Linear fits to the time
dependencies are shown directly on the plots.

The free decay of the nutations allows direct measure of the (s of the modes. In Table 3, we
list the fitted parameters ¢ and d and the recovered @Js, initial amplitudes ay,, half lives ¢, 5, and
Ekman numbers Ej, for the plots shown in Figure 3, using the periods of the average spectra given
in Table 2.

The free ring downs of the nutations provide an opportunity to measure the viscosity just below
the Core-Mantle boundary (CMB).
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Table 3. Free decay parameters of the retrograde and prograde nutations in the spectra of the GSFC and
USNO series of VLBI nutation measurements.

RFCN
c d an QN Qw 12 Ey
(107%) (parcseconds) (days)  (10711)
GSFC -1.36446 2.9204 832.53 23.976 10,051 2206.24 10.8135
USNO -1.16525 2.8525 712.03 28.379 11,769 2583.44 7.8869
PFCN
GSFC -1.18929 2.7142 517.85 29.556 11,474 2531.22  8.2976
USNO 0.126810 2.2224 168.88 -278.0 -107,608

Even in realistic Earth models, the free core nutations are closely rigid-body rotations of
the outer fluid core with respect to the nearly stationary mantle and crust (shell) (Jiang,
1993). They are both nearly diurnal retrograde wobbles with angular frequencies close to
—Q. For a nearly diurnal retrograde wobble of amplitude A, the velocity field at radius r is
—Ar (é sin Ot + ¢ cos 0 cos Qt). By comparison, the shell is in nearly uniform rotation and the
adjustment of the velocity field to that of the shell takes place across an Ekman layer of thickness
§ of O (VEy) with the Ekman number given by

14

E, = ——
k bQQa

(13)

where b is the radius of the core-mantle boundary and v is the kinematic viscosity. The leading
order boundary layer equations (Moore, 1978; Smylie and McMillan, 1998) yield a boundary layer

thickness
v
— . 14
) \/Q (1/2 4+ |cos 8)) (14)

The leading order stresses are

Org = gve, Org = g%, (15)

where 7 is the dynamic viscosity. The rate of dissipation of energy per unit area in the motion
against these stresses is

d
d_i = VhTrg + VpOrp = A2b2g [sin2 Qt + cos? 0 cos? Qt] . (16)

With py representing the density at the top of the core, and integrating over the CMB and over
one cycle, the energy dissipated per cycle is found to be

2, 9,4 |2V
oE ™A (138v3 —37). (17)
The energy of the motion is closely
1
5I(,CAQ, (18)

where I, = 912 x 103* kg - m? is the moment of inertia of the outer core.
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The quality factor Qyy is defined as 27 times the ratio of the energy E to the energy dissipated

per cylce, and is then
1051,

~ 2mpobty/20/% (138v/3 — 37)

The kinematic viscosity just below the CMB can then be retrieved from the Qyw of the ring down
as

Qw

(19)

1102512 Q
- oc (20)

_ N
8m2pRb8 (138\/3 . 37) Q2

With b = 3,480km as the radius of the core-mantle boundary, using the values of Qyw in Table
3, the ring down of the RFCN from the GSFC series gives a kinematic viscosity of 0.0955 m? s~ 1,
while the ring down of the RFCN in the USNO series gives 0.0696 m? s~'. The ring down of the
PFCN in the GSFC series gives 0.0733 m? s~!. Since the density at the top of the core is close
to 10* kg - m™3, the respective values of the dynamic viscosities are 955 Pa - s, 696 Pa - s and
733 Pa - s. These compare with the value of Gans (1972) of 8 centipoise or 8 x 103 Pa - s, based
on the extrapolation of laboratory data, and commonly used by dynamo theorists! Our values are
closer to the value of 7 m? s~!, measured by Davis and Whaler (1997), from the spin-up of the
core following the 1969 geomagnetic jerk.

7. Discussion

Two unusual circumstances have allowed us to make an important direct measurement of the
viscosity at the top of the core. First, we now have available quite long VLBI nutation measurement
series which allow us to explore the temporal behaviour of the free core nutations. Second, during
the more than twenty-three year lengths of the records from Goddard Space Flight Center and the
United States Naval Observatory, the free core nutations appear to have been in free decay.

Since, in the Earth frame, the free core nutations are closely rigid-body rotations of the outer
fluid core with respect to a nearly stationary mantle at close to a retrograde diurnal period, their
ring downs, in combination with simple Ekman boundary layer theory, provide direct measures of
viscosity at the top of the core.

The average recovered viscosity of 795 Pa-s is very much larger than the value of 8§ x 1072 Pa-s
estimated by Gans (1972), on the basis of the extrapolation of laboratory measurements, and
commonly used by dynamo theorists. We are fortunate in the fact that, at these short periods, the
Lorentz force and electromagnetic damping effects are completely negligible (Crossley and Smylie,
1975).

The detailed spectral analyses involved have been made possible by the addition of the Parseval
criterion for the determination of the number of smallest singular values to be eliminated, in the
Singular Value Decomposition technique, used to solve the conditional equations for the calculation
of the Discrete Fourier Transforms of the non-equispaced series of nutation observations.

While the free core nutations have now rung down to nearly unobservable levels, at the outset
of the observations in 1979, the newly observed Prograde Free Core Nutation, predicted by Jiang
(1993), had an amplitude in the GSFC data as high as 62% of the dominant RFCN. Should the
modes be excited again, they promise to allow further refinement of Earth property measurements
at the top of the core.
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