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Abstract

The current combination of EOP time series actually implies a violation of the basic rule that the
same data cannot be used twice in an adjustment process. This fact is presently neglected by treating
the input data of the IVS Analysis Centers as “new” or independent data. However, this deficiency
can be mitigated by introducing proper correlation coefficients between the Analysis Centers. Different
approaches for deriving such correlations as well as results are presented in this paper.

1. Introduction

The generation of the IVS combined EOP series actually implies a violation of the basic rule
that an observation can only be used once in an adjustment process. However, due to different
modelling of the observations or different data editing and outlier elimination procedures utilized
by the Analysis Centers it can be assumed that the resulting EOP series can be treated as (ap-
proximately) independent datal. Nevertheless, it is possible to process estimates from the same
set of observations in a rigorous way by using the correlations between the estimates. In the case
of the IVS combined series two types of correlations have to be considered:

e correlations between EOP components pz, ., pz,,duT15 Py,,duT1 and pay g, reported by the
respective Analysis Center with

Pij =
005

e correlations between the Analysis Centers

Both types of correlations are necessary to form a rigorous combination. As an example eq. 1
shows the covariance matrix for two Analysis Centers and two components as it should be used in

the combination. 2
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The covariance matrix contains three types of covariances:
012 — covariances between different Analysis Centers
Oz1y, — covariances between EOP components of the same Analysis Center

Oz1y, — “mixed” covariances (between Analysis Centers and EOP components)

!The IGS uses this approach (Kouba, pers. communication).
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In this paper we develop the correlations between the Analysis Centers. For clarity reasons
the correlations between the components py, 4., Pz, duT1; Py, dvT1 and pgyde and the “mixed”
covariances are neglected here.

EQOP series from five IVS Analysis Centers are currently being combined to form the official
IVS product (two OCCAM solutions from AUS — Geoscience Australia and IAA — Institute of
Applied Astronomy, St. Petersburg and three Calc/Solve solutions from BKG — Bundesamt fiir
Kartographie und Geodisie, GSF — Goddard Space Flight Center, and USN — U.S. Naval Observa-
tory). Embarking on a rigorous approach we first develop a correlation matrix purely on the basis
of a thought experiment taking into account the general facts of the different solutions (table 1).
Small correlations are entered between Analysis Centers using different software packages, high
correlations between the same software package and even a little higher between GSF and USN,
using the same software and the same procedures.

Table 1. A priori correlation matrix from a thought experiment

AUS | BKG | GSF | IAA | USN
AUS - 0.2 02 | 0.7 | 0.2
BKG - 0.7 | 0.2 | 0.7
GSF - 02 | 08
TAA - 0.2
USN -

2. Covariances and Correlations

This section summarizes briefly the formulas for the derivation of a theoretical covariance
matrix. These formulas were mainly taken from [4]. The basis is a two-dimensional random vector
as a realization of a two-dimensional random variable. The two observation vectors 1; and Iy
contain the EOP time series determined by two different Analysis Centers. The observations can

L 1 lT _ 1{

be grouped pairwise according to the epoch of observation.
I lo1 ln1
. = e )
Ly |’ ‘ 13 < l12 ) ( l22 ln2 @

Eq. 3 gives the definition of the expectation values of the random variables.

iy lig -+ lip

L =
log log =+ oy

T
B | | I, LT |
E(L)= ‘ E(Ly) | = | E;l”’ Jim Ejz_‘:l” = |y | =H (3)
In the next step true errors can be calculated according to eq. 4.
T
T €1 hi—p ho—pr - lin—m T T
e = = =1" — pe 4
€3 lon —po log—po -+ lon — po H 4)
The covariance matrix follows according to
T T T 2
€ E1E1 E7€&2 g g12
S = E 1 T T — E 1 1 — 01 5
i { €g ‘ £1 & ‘ Egsl EgEQ 021 0'(2)2 ( )
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with F (6’{61) = 0'(2)1, E (6%—'62) = 0'(2)2 and F (E’{Eg) =F (E%—'&?l) = 012 — 0921.
In the last step the correlation matrix can be deducted by simple matrix algebra (cf. [3])

I pi2

R =
pa1 1

with R =F X, F and F = diag (1/0’01, 1/002).

3. Determination of Correlation Coefficients

The target of this investigation is to determine empirical correlation coefficients between the
Analysis Centers. Two cases have to be distinguished (cf. [4]):

1. True values are unknown. In this case mean values have to be calculated in a first step. The
mean values are then used to calculate a vector of corrections v.

x1 T

El
I

1 Z1—ln T -l - Z1—liy
= — ;vVeo= _ _ _ 7
n T Tog—lo1 To—lyg -+ ZTy—lyy, @

n n
Dol Yl
=1 =1

Z2
The empirical covariance matrix can be obtained according to eq. 8.

T T 2

V1 V1 V] U2 857 512
- 1 5 1
3y = viv = = 8
11
n—1 n—1 T T 2
V3V1 V)V 821 82

2. True values L; or expectation values y; are known. In this case the empirical covariance
matrix follows directly:

1. T 1. T 2

_ Hsl €1 Hsl €2 81 S12

2]1 = = (9)
1.7 1.T 2
562 €1 562 €9 S21 S5

In both cases the result is the empirical correlation coefficient:

4. Significance Tests

Empirical correlation coefficients r are normally distributed:

2
re~N (p, m) (10)

for n — o0. In case of small samples a transformation is needed (eq. 11) This transformation
permits the use of the normal distribution even for small samples (e.g. [2]).

1 1 —
z:§log£,z~N(C,oz) and 2 ¢

~ N (0,1) (11)

2P
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with ) 14
p p
S 12
C= T, Y o (12)

and

O, —

V=3 (13)

In addition it is possible to give confidence regions for the calculated correlation coefficients. An-

other possibility to express the significance test for correlation coefficients using the t-distribution
is given in [5].

5. Results

To investigate the correlation coefficients a subset of sessions common to all Analysis Centers
series currently incorporated in the combination was chosen (NEOS-A, R1 and R4). The number
of 634 sessions was sufficient to calculate significant correlation coefficients. As already pointed
out in section 3 two cases have to be distinguished:

1. True values are unknown. This test failed because this method cannot remove the determin-
istic signal properly. It turned out that all correlation coefficients are 1, hence the resulting
covariance matrix is singular.

2. “True” values can be simulated by using a series of higher accuracy level or an independent
series ([1]). A suitable series to remove the deterministic signal from the input EOP series
of the Analysis Centers is the IERS C04 series.

Fig. 1 shows a comparison of the “thought experiment” matrix and the correlation matrix
for dip after removal of the deterministic signal from the EOP series subtracting the IERS

C04 series.
1
AUS BKG GSF IAA USN AUS BKG GSF IAA USN
AUS . ' AUS 0.8
BKG . BKG 0.6
GSF _ GSF 0.4
IAA IAA
) 0.2
USN USN .

0

0

Figure 1. Correlation matrix from thought experiment (cf. tab. 1) (left) and correlation matrix for parameter
diy after removing the deterministic signals subtracting IERS C04.

To test this approach a combined series was calculated using the correlation coefficients shown
on the right hand side of fig. 1. Figure 2 shows a comparison of the uncorrelated and the correlated
approach for z,. The differences are mainly within the range of + 100 pas.
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Figure 2. Differences between EOP combinations using a covariance matrix which contains covariances
between the Analysis Centers and a diagonal covariance matrix respectively for parameter .

6. Conclusions and Outlook

The use of correlation coefficients between Analysis Centers is another step forward to a rigorous
combination of EOP time series. It has been shown that the correlation matrix computed using
real data agrees surprisingly well with the one developed by purely taking into account known facts.
As it had to be expected the average formal errors of the combined series increased by a factor
of ~ 1.4 as compared to the combination where the results of the Analysis Centers are treated as
uncorrelated. In the next step, the correlations between the individual parameters and between
the Analysis Centers have to be consolidated to form a single covariance matrix containing both
types of correlations. Only then the formal errors of the combined earth orientation parameters
will become really meaningful.
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