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Abstract. The application of an envelope method to the analysis of
celestial pole offsets in the interval 1984-2007, published by IERS and NEOS
services, has shown that the mean value of the RFCN period is close to —444
solar days. However there are three consecutive intervals of time when this
period sharply changed and had values —421.440.1, —614.7+1.1, and —447.1+
0.2 days.

1. Introduction

The basic feature of the Earth’s interior is the presence of a hot fluid outer
core capable to free near-daily spin in a cavity limited by lower mantle. In
a Celestial Reference System (CRS) this spin causes circular offsets of the
Celestial Intermediate Pole (CIP) with a period of about —430.2 solar days
which refers to the Free Core Nutation (FCN). The modern theory of the
Earth’s rotation [1] asserts that the FCN period is induced by the ellipticity of
the fluid outer core and should be constant over a long time.

However, because of active physical processes in the Earth’s core, its dy-
namics hardly can be named “free”. It is considered that the outer fluid core
consists basically of iron and its central part named the inner core consists of
iron and nickel in a rigid crystal condition. Both parts of the core can contain
impurities of silicates and other light elements. Being hot but cooling down,
the fluid core has convective and gravitational movements, which due to high
electric conductivity of iron and nickel create a magnetic field penetrating all
of Earth’s body and going out into space. This phenomenon is referred to as
an electromagnetic dynamo.

It is established also that the external layer of the outer core rotates more
slowly than the mantle of the Earth, which cannot be explained by the viscosity
of the core but by its electromagnetic connection with the mantle [2, 3]. It
results in the western drift, no-dipole part of the magnetic field.

There are numerous publications devoted to the influence of the electromag-
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netic connections of the core and mantle on angular velocity and polar motion
of the Earth. The problem related to CIP offsets was discussed only in one
work [4], where it is shown that in 1992 and 1998 changes of the FCN phase
coincided with geomagnetic jerks. Below it will be shown that modern VLBI
observations give new important information for studying the fluid core of the
Earth and its influences on geodynamics.

2. Stochastic Model of RFCN

After 1984 the accuracy of VLBI observations has increased so that it is
practically possible to study FCN as variation of CIP offsets with the amplitude
limited by 0.5 ms. It appears that this near-harmonic variation has a negative
frequency; therefore it started to be named Retrograde Free Core Nutation
(RFCN). To the naked eye, the amplitude of RFCN varies over a wide range.
Therefore, in the numerical models constructed by T. Herring in 1998 [5] and
S. Lambert in 2007 [6], it is represented as piecewise linear functions under the
condition that the RFCN period is constant and equal to —430.21 solar days.
Simultaneously an analysis of amplitude and phase variations was undertaken
by Z. Malkin and D. Terentev in 2003 [7].

In addition to S. Lambert’s most exact model (LAM), we constructed an-
other numerical model of RFCN by means of the least squares collocation
technique (LSC) [8]. The basic difference of this method to all other linear pro-
cedures is that it uses the covariance function of the desired signal as a priori
information. Generally, for the construction of such a model it is necessary to
remove a low-frequency trend and then a white noise from the observational se-
ries [9, 10]. The last procedure is defined by the formula ¢t = Q,,(Q,,+0>I)~'1
where [ is the vector of one component of the observed CIP offsets (dX or dY’),
t is a vector of corresponding model, o2 is a variance of white noise of obser-
vation errors, @y, is a Toeplitz covariance matrix. This matrix is constructed
from the positive definite function ¢;(7) as model of empirical auto-covariance
qu (7). The variance o2 is defined as the difference between these functions at
the zero point.
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Figure 1. X-component of RFCN as fol-  Figure 2. Y-component of RFCN as fol-
lows from LSC and LAM models (thick lows from LSC and LAM models (thick
and thin lines, respectively) and thin lines, respectively)
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The comparison of the LAM and LSC models are shown in Fig. 1-2. The
RMS of IERS(dX) and IERS(dY") offsets and their residuals with respect to
LAM and LSC models are given in Tabl. 1. The values in columns 3 and
4 correspond to a filtering of the series, whereas columns 2 and 5 show the
accuracy of the predictions. For all available IERS and NEOS series the LSC
model appreciably better corresponds to observations than the LAM model.

Table 1. RMS of CIP offsets and residuals with LAM and LSC models in mas

Span of observa- | 45700- | 46275- | 50371- | 54467-

tions in MJD 46274 | 50370 | 54446 | 54518
Offsets number 575 4096 4096 52

IERS(dX) .534 .353 .198 .143
IERS(dX)-LAM .506 .322 179 .135
IERS(dX)-LSC .485 315 .176 .130
IERS(dY) .430 .366 222 .296
IERS(dY)-LAM 453 .338 .202 191
IERS(dY)-LSC .400 .329 .193 142

3. Phase Analysis

The theory outlined below is referred to as an envelope method [11]. This
method allows to evaluate the amplitude and phase of stochastic processes for
each moment of observation. We shall consider CIP offsets as near-harmonic
oscillations on a plane (X,Y"), which is tangent to the celestial sphere in a point
set by the TAU 2000 precession-nutation theory:

xz(t) = E(t)cos F(t), y(t) = E(t)sin F(t),

E(t) = z(t)2 +y(t)?, F(t) = arctan(y(t)/z(t)).
Let F(t) = gt + p(t), where ¢ is a negative frequency and p(t) is a phase
variation not containing a linear trend. Designating u =| ¢ |> 0 we obtain
F(t) = —ut + p(t) and the following relations:

z(t) = A(t) cosut + B(t)sinut, y(t) = —A(t)sinut + B(t) cosut,
A(t) = x(t) cosut — y(t) sinut, B(t) = z(t)sinut + y(t) sinut,
E(t) = VA@? + BAP, p(t) = arctan(B(t) /A(1)).
LSC models of the same name CIP offsets for IERS and NEOS series ap-
peared very close, therefore they have been averaged. The amplitudes and

phases of RFCN for both models were calculated with an accepted period of
Py = —1/u = —444 day. This period was chosen because the global phase trend

233



over the entire span of used observations was found to be equal to zero. The
functions E(t) and p(t) obtained after removing phase jumps equal to +7 are
shown in Fig. 3-4. As seen from Fig. 4 the phase linear trend was calculated for
three sequential intervals of time bounded by MJD dates 46275, 51080, 51520,
54518 for the LSC model and 46275, 50844, 51402, 54518 for LAM. Two inner
dates were obtained by the least squares method assuming that the total trend
was uninterrupted.
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Figure 3. RFCN amplitudes derived Figure 4. RFCN phase variations and
from the LAM (solid line) and LSC (dot-  their trends derived from the LAM (solid
ted line) models line) and LSC (dotted line) models

Let the observed phase be p(t) = (du)t + dp(t) in degrees, where du is the
factor for a linear trend [degree/year], and dp(t) is a residual variation not
containing a linear trend. Because the frequency of the envelope function is
equal to F(t) = —ut+p(t) = —ut + (du)t +dp(t) = —(u—du)t +dp(t), the new
absolute value of the RFCN frequency will be w = u — du. The coefficients of
the linear phase trend for the three mentioned above intervals of observation
duy, dus, dug are obtained by the least squares method. Taking into account

the relations P = —1/w, op = 0, /w?, we receive the corresponding periods
(Tabl. 2).

Table 2. Linear phase trend and periods of RFCN

Model | Par. 1 2 3 Dim.
LAM | du | —14.2+£0.1 | 480.5+0.2 | +2.0+ 0.1 | degree
LSC —142+0.1 | 496.9£0.7 | +5.2+0.1 |per year
LAM | P |—423.7+0.1|-609.8 £0.3|—447.0+£0.1| solar
LSC —421.4+0.1|—-614.7+1.1|—447.1+0.2| days

4. Conclusions

e The mean value of the RFCN period in the time span 1985.6-2008.2 is
approximately equal to —444 solar days and is not constant.

e In the initial interval from 1985.6 until 1998.0, the period amounted to
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about —422.5 days. Then, during 1998, it suddenly changed up to near
—612 days, and after another year it again changed to —447 days.

As is apparent from Fig. 1-3, the continuous process of RFCN practi-
cally ceased in 1999 and a sharp change in phase and period occurred
subsequently.

The first numerical RFCN model was constructed by T. Herring based
on observational data up to 1998. Therefore the period that he derived
(—430.2 days) is close to the one mentioned above for the same interval.
S. Lambert did not reconsider T. Herring’s RFCN period. period.

If changes of the RFCN frequency are real, the resonance effects in terres-
trial tides and lunar-solar nutation must be unstable, which has great sig-
nificance for geodynamics. To check this effect it is necessary to construct
a new transfer function for resonances, obtain a new decomposition for
the lunar-solar nutation for the three mentioned above intervals of time
and reprocess all VLBI observations. The new series of CIP coordinates
should be more precise than the previous.
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