ERP Estimation using a Kalman Filter in VLBI

M. Karbon, B. Soja, T. Nilsson, R. Heinkelmann, L. Liu, C. Lu, J.A. Mora-Diaz, V. Raposo-Pulido, M. Xu, H. Schuh

Abstract Geodetic Very Long Baseline Interferometry
(VLBI) is one of the primary space geodetic tech-
niques, providing the full set of Earth Orientation
Parameters (EOP), and it is unique for observing long
term Universal Time (UT1). For applications such as
satellite-based navigation and positioning, accurate
and continuous ERP obtained in near real-time are
essential. They also allow the precise tracking of
interplanetary spacecraft. One of the goals of VGOS
(VLBI Global Observing System) is to provide such
near real-time ERP. With the launch of this next
generation VLBI system, the International VLBI
Service for Geodesy and Astrometry (IVS) increased
its efforts not only to reach 1 mm accuracy on a global
scale but also to reduce the time span between the
collection of VLBI observations and the availability
of the final results substantially. Project VLBI-ART
contributes to these objectives by implementing an
elaborate Kalman filter, which represents a perfect tool
for analyzing VLBI data in quasi real-time. The goal
is to implement it in the GFZ version of the Vienna
VLBI Software (VieVS) as a completely automated
tool, i.e., with no need for human interaction. Here we
present the methodology and first results of Kalman
filtered EOP from VLBI data.
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1 Introduction

At the moment the VLBI products have a latency of
about two weeks. However, as the need for near real-
time estimates of the parameters is increasing, e.g.,
for satellite based navigation and positioning or for
enabling precise tracking of interplanetary spacecraft
[Ichikawa et al., 2004], the efforts to shorten the time
span between observation and final results have been
increased considerably. To reach these goals, the VLBI
Global Observing System (VGOS; Petrachenko et al.
[2009]) was proposed, where a dense network of very
fast moving antennas (slewing speed >6°/s) is fore-
seen, providing a high number of observations per time
unit. The aim is to reach an accuracy of 1 mm (posi-
tion) and 1 mm/year (velocity) from a global solution
of 24-hour sessions, and near real-time operation with
the help of electronic data transfer to the correlators. In
order to retrieve the analysis results in near real-time,
a solution algorithm applying completely automated
processes is also required. One way to achieve these
goals is by implementing an adaptive Kalman filter in
place of the classical least-squares method (LSM) in
VLBI analysis software packages. Herring et al. [1990]
had proposed such an approach already in the 1990s,
where the clock and atmosphere parameters are mod-
eled as stochastic processes, which can authentically
represent the geodetic parameters as well as the dy-
namics of the system processes. Various software pack-
ages include such a Kalman filter approach, e.g., Oc-
cam [Titov et al., 2004]. However, the existing software
packages implemented the Kalman filter in the form
of a post-processing tool, as at that time continuous
VLBI observations were utopistic and VLBI was not
designed for true real-time applications. Within project
VLBI-ART, a Kalman filter will be realized that is in
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particular designed for analyzing VLBI data in (near)
real-time. This method has the advantage that simul-
taneously both the deterministic estimation of param-
eters, which usually change slowly throughout time,
e.g., station positions, and the tracking of highly vari-
able parameters showing a stochastic behavior, like
clocks or atmospheric parameters, are possible. The fil-
ter is able to perform the VLBI parameter estimation
without any manual interaction, making it a completely
autonomous tool. In this paper we describe the filter
and discuss its application for ERP determination.

2 Mathematical Principle of a Kalman
Filter in VLBI

Traditional VLBI analysis software uses the least-
squares method (LSM) or least-squares collocation for
the estimation of the desired parameters, in which most
of the parameters showing a stochastic behavior, such
as clock and atmospheric disturbance, are approxi-
mated by piecewise linear functions. The length and
order of these polynomials have to be chosen manually
by the analyst according to session type and duration
and may vary from analyst to analyst, and thus they
are subjective. For this method, the observations have
to be artificially bundled as they cannot handle a
continuous data flow. All this hinders the efficiency
of the data processing and makes a continuous data
analysis almost impossible.

The Kalman filter was especially developed for
real-time applications and is widely applied in various
fields of research and development including the anal-
ysis of space geodetic data (cf. Herring et al. [1990];
Morabito et al. [1988]; Nilsson et al. [2011]). The ad-
vantage of such a filter over ordinary least-squares is
that the estimation is carried out sequentially, epoch
by epoch, by combining the observations at each time
step with the estimation of the previous ones, making
it ideal for real-time applications [Kalman, 1960]. Fur-
ther, stochastic models replace the polynomial param-
eter models and thus more appropriately describe the
physics behind the processes.

The Kalman filter should follow the sequence of
observations, using the state at the epoch (¢ — 1) to pre-
dict the state at the next epoch ¢. Finally the predicted

value is combined with the new information to get an
optimal estimation for ¢. If X, is the state vector contain-
ing all unknown parameters to be estimated at epoch ¢,
it can be related to the estimates at a previous epoch
x;_1 through

X =Fx1+w;, (1)

where F;x;_; is the prediction of x; based on x;_; and
W, is the error in the prediction. F is called the state
transition matrix. The covariance matrix of the total er-
ror P, can be calculated by

P, =FP,_F/ +Q,, 2)

with P,_; denoting the variance-covariance matrix of
x,_1 and Q; the variance-covariance matrix of the pre-
diction error w;. The observations z; at epoch ¢ are in-
troduced through

z; = Hix; +v; . 3

H; is the observation matrix and v, is the observation
noise. To get the optimal estimation for x; and its co-
variance matrix P; the prediction x;, and the observa-
tion z; can be combined using

Xf = X; + K[(Z[ - Hx;) 7P[ == (I - K[H[)P; 5 (4)
with the Kalman gain K;
K, =P H/ (HP H +R)™", ()

where R; is the variance-covariance matrix of the ob-
servation noise v;.

In our filter the state transition matrix F is realized
as a unit matrix with the dimensions [n x n] with n be-
ing the number of unknowns. Since all the determin-
istic models are already applied within VieVS [Bohm
et al., 2012], only the stochastic processes are left to be
modeled. Exceptions are the clock parameters, where
the relationship between offset and rate is described
through a parameter of the primary diagonal. The noise
parameters for the process noise covariance matrix Q
are taken from literature (e.g., [Herring et al., 1990]).
For the clock, these noise parameters were determined
empirically. The observation matrix H consists of the
partial derivatives of the delay w.r.t. the unknowns. For
most cases these are identical to the ones used in the
LSM approach.
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3 First Results

Here first results of session 08JUNI19XE_NO004 are
shown. We chose this session as it represents an aver-
age state-of-the-art IVS VLBI session and falls into the
time span where ERPs from GPS [Steigenberger et al.,
2006] are available to us. It involved seven antennas
and contains 1,576 observations within 596 scans over
24 hours. The filter was set up to estimate x- and y-
pole, dUT1, station coordinates, and zenith wet delays
for all stations, as well as clock and clock rate for all
stations except the reference clock. Here, only the re-
sults for polar motion and dUT1 are shown (Figure 1).
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Fig. 1 The upper plot shows x-pole, the middle shows y-pole,
and the lower shows dUT1. The solid graph depicts the results
for the Kalman filter, the dotted line shows the results for the
LSM solution, and the dashed line shows the GPS parameters.

Although the noise parameters were chosen inde-
pendently of the LSM solution, i.e., no tuning towards
the LSM solution was performed, the results show a
very good agreement. The adjustments to the IERS 08
C04 [Bizouard et al., 2009] a priori of dUT1 differ at

Table 1 RMS of the three solutions, i.e., Kalman (KAL) and
LSM in comparison to the GPS time series.

RMS KAL  |RMS (KAL-LSM)
adjustments only | adjustments only
x-pole [uas] 0.2152 0.1834
y-pole [utas] 0.1347 0.1796
dUTI [ms] 0.0135 0.0176

RMS (LSM-GPS)|RMS (KAL-GPS)
a priori included | a priori included

x-pole [mas] 0.2778 0.3235
y-pole [mas] 0.2187 0.1488
dUT1 [ms] 0.0154 0.0325

the microsecond level. See Table 1 for RMS values
of the various approaches. For an external validation,
an ERP time series derived from GPS was used. Be-
cause not all the models involved in the determination
are known, only the final ERP series can be compared.
In spite of biases, the agreement is good, although the
differences in general are larger in comparison to the
LSM solution. For y-pole the Kalman solution agrees
slightly better with the GPS results. Further investiga-
tions are needed and other sessions have to be chosen
to verify these results, as also the GPS time series show
some small unexpected peaks (see Figure 1).

4 Current Status and Outlook

A first version of the Kalman filter was implemented
and is now in the debugging phase. We showed pre-
liminary results for the ERP and compared them to the
classical LSM, and we found a very good agreement.
The comparison of Kalman filter with GPS also shows
a good agreement between the results. All results are
still under investigation and validation, as well as the
GPS time series itself, as it shows some unexpected
peaks. Further, the clock models will be improved, so
that clock breaks are automatically detected. This is
the first step towards full automation. Later the filter
will be extended to other parameters such as source
coordinates or station velocities. The improvement of
the system dynamics and the fine tuning of the pro-
cess noise as well as the refinement of the deterministic
and stochastic models are ongoing as well. We plan to
have the filter fully operational for the analysis of the
CONT14 campaign.
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