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Abstract A massive body causes a time delay in the
gravitational field of a body. The conventional gravi-
tational delay model was expanded into a Taylor se-
ries on O(2). The results of the expression show a de-
pendence on the positions of the two antennas, the ob-
served source (quasar), and the massive body (Sun or
Jupiter). In this paper we compare the Taylor series ex-
pansion approach with the conventional gravitational
delay. The total difference of these models stays below
the accuracy limit.
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1 Introduction

The conventional gravitational delay model for the re-
duction of geodetic VLBI [1] observations was devel-
oped in the 1980s and its use was recommended by the
IAU General Assembly in 1991. We propose an alter-
native model by using the Taylor series expansion of
the gravitational delay on the small parameter. A nu-
merical comparison of these two models shows their
consistency at the 1 picosecond (ps) level for the Sun’s
gravitational field (at an angular distance of about 4°).
Although the new formula is more complex, because it
comprises several terms, there are some advantages: 1)
direct analytical link to the effect of the light deflection,
2) exclusion of the coordinate terms (total potential of
the solar system bodies) in the gravitational and geo-
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metric delays, and 3) applicability to a wide selection
of related effects.

2 The Conventional Formula

Besides the three classical tests, the fourth test of Gen-
eral Relativity—the delay of a signal propagating in the
gravitational field—has been proposed by Shapiro [2]
and is known as the Shapiro delay. The difference be-
tween the two Shapiro delays as measured with two ra-
dio telescopes gives a gravitational delay which must
be considered at the standard reduction of the high-
precision geodetic VLBI data. The IERS Conventions
2010 [3] contain the conventional formula for the grav-
itational delay, which is valid for most cases unless a
distant quasar and a deflecting body are too close. This
formula is presented as follows

(Yy+1)GM | |rq|+s-11
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where 7y is the PPN-parameter of General Relativity
[4], G is the gravitational constant, M is the mass of
gravitational body, ¢ is the speed of light, s is the
barycentric unit vector towards the radio source, and
r;j is the vector between the center of mass of the grav-
itating body and the i-th telescope.

3 Two Examples of Geodetic VLBI

Sessions

One close approach of Jupiter to the radio source
1922-224 on 18/19 November 2008 was observed
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during the OHIG60 session. Four stations (Hobart26,
Kokee, Tsukub32, and Parkes) were tracking the radio
source over twelve hours. The minimum approach
distance was 1.4'. A special “hand-made” schedule
was prepared by Dirk Behrend (GSFC).

Several radio sources were observed in close
angular proximity to the Sun during the R&D session
RD1208 on 2/3 October 2012. The radio source
1243-072 was tracked at the range of angular distance
from of 3.7° to 4.3°. Five stations (Kokee, Tsukub32,
HartRAO, Wettzell, and Onsala60) participated in this
session.

4 General Relativity Delay Model

An expression that links the gravitational delay and the
formula for the light deflection angle [5] is yet to be
developed. To obtain it we have expanded the gravita-
tional delay using a Taylor series expansion on 0(%).
We keep the terms of order (%)2 that correspond to an
accuracy of about 1 ps.

We expand Formula (1) as a series of % where r; is
the barycentric vector of the second station:
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where the vectors b and r and the angles ¢, y, 6, and A
are shown in Figure 1. In order to provide more accu-
rate modeling of the gravitational delay, in the calcula-
tions one has to use the vector r; for the second station
instead of the barycentric vector r of Figure 1.
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Fig. 1 Angle 0 — the impact parameter, angle ¢ between vectors
b and s, and angle y between vectors b and r.

Figure 1 shows the positions of the quasar Q, the
deflecting body B (e.g., Jupiter or Sun), the baseline
vector b, the vector r from the body to the geocenter,
and the barycentric unit vector s to the quasar Q.

Surprisingly, we found that the first term in For-
mula (2) is equal to the term including the PPN param-
eter v of the geometric delay, but with opposite sign,
and consists of distance . We want to bring your atten-
tion to the fact that, although the distances are different,
the terms are equal to within about 0.1 ps. Keeping in
mind that (b-s = |b|cos @), the formula for the total
group delay recommended by the IAU [3, 6] becomes:
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where 74 is the resultant contribution of General Rela-
tivity (GR) effects to the Tg0yp, including two relativis-
tic terms which cancel each other out. Then, 7., may be
written as follows for y =1

[ri|+s-rp  2GM(b-s)
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or, from Formulas (2) and (4), as
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—the total effect of GR in the group delay.

4.1 The Approximation of Small Angles

Given that Y = 1 in GR and ignoring the minor terms
of O(f—;) for the sake of simplicity, then

__ 2GM bsin@sin6cosA

_ 4GM bsin@cosA
TGR - c3 rz(lchS 9) (6)
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where R = 0 - ry is the linear impact parameter. It is
now easy to note that Formula (6) corresponds to the
formula of the light deflection developed by Einstein
in 1916: o = 4GM.

The light deflection angle & and 7 are linked by
nb .
Ter = O —sInQ CcoOsA. @)
c

For an arbitrary angle 0, o/ is
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Formula (8) proves that the deflection angle as
measured with geodetic VLBI is independent of the
baseline length in a first approximation. Figure 2
shows the modeled curve of the light deflection angle
variations for the approach of Jupiter to the radio
source 1922-224. This arc is common for all four
baselines (Hobart26—Parkes, Hobart26-Tsukub32,
Tsukub32-Kokee, and Parkes—Tsukub32).

\ e T
it
al N
N,
%
3
2 | - |
&
£
&
L |
O | - —
| | | |
1 0 1 2

o, mas

Fig. 2 The light deflection angle o for the baselines Hobart26—
Tsukub32, Parkes—Tsukub32, Hobart26—Parkes, and Tsukub32—
Kokee for Jupiter to quasar 1922-224.

We can present the resultant contribution of GR in
the approximation of small angles to the total group
delay in terms of /R as follows:

4GM [ b . » .,
T =—3 Esmq)cosA—msm @cos2A| (9)

4.2 Major Term t; and Effect of Minor
Termst, and t;

The alternative Formula (5) for an arbitrary angle 0
consists of three terms: the term #; from Formula (2)
gives a major contribution to the GR effects, while the
terms #, and f3 from Formula (2) are much smaller than
t; for the case of the Sun. However, for a very close

approach of Jupiter to radio sources (less than 30”) all
three terms become comparable.

The four curves of Figure 3 reflect the variations
for four VLBI baselines of different length: Kokee—
Tsukub32, HartRAO-Wettzell, Onsala60—Wettzell,
and HartRAO-Onsala60. Figure 3 shows the depen-
dence of the term #; on Universal Time (UT) and
the angle O for the approach of the Sun to the radio
source 1243-072. This term varies steadily due to the
relatively slow apparent motion of the Sun.
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Fig. 3 Major term #; vs. UT (left) and vs. angle 6 (right) for the
case of 1243072 for the baselines Kokee—Tsukub32, HartRAO-
Wettzell, Onsala60-Wettzell, and HartRAO—Onsala60.

The approach of Jupiter to the radio source
1922-224 is more interesting due to the small mini-
mum angular distance. The angle 6 increases from 1.4/
to about 5’ rather quickly (in about 12 hours) followed
by a fast change in the deflection angle (Figure 2).
Figure 4 shows the variations of the term #; depending
on UT and O during this event. This term reaches its
maximum near 12 UT and becomes negligible over a
short period of time.
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Fig. 4 (left) Major term #; from date; (right) #; from 6
for Jupiter to the radio source 1922-224 for the base-
lines Hobart26-Tsukub32, Parkes—Tsukub32, Hobart26—Parkes,
Tsukub32-Kokee.
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Figure 5 shows variations of the sum of the two mi-
nor terms (#, +t3) depending on UT and 6 for the case
of 1922-224. Although the angle 6 is larger than 1/,
we clearly see wide swings in amplitude in the small
terms. In accordance with Formulas (5) and (9), these
terms are proportional to (%)2 (Figure 6); therefore,
this sum is becoming very large for longer baselines
(Hobart26-Tsukub32) with respect to shorter ones
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Fig. 5 Variations of the sum (7, +#3) for the approach of Jupiter
to the radio source 1922-224 vs. 6 (left) and vs. UT (right) for
the baselines Hobart26-Tsukub32, Parkes—Tsukub32, Hobart26-
Parkes, and Tsukub32-Kokee.

(Hobart26— Parkes) even at the same impact parameter
0. For a very close approach (less than 30”) the sum
(t2 +13) for long baselines will be of the same order of
magnitude as the major term ;.
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Fig. 6 Variations of the term #; (left) and the sum 1, +#3 (right)
for the approach of Jupiter to the radio source 1922-224 vs.
baseline length for the baselines Hobart26-Tsukub32, Parkes—
Tsukub32, Hobart26—Parkes, and Tsukub32-Kokee.

5 Comparison of the Two Models

The sum of the conventional gravitational delay model
(1) and the GR coordinate term %ﬁb‘s) from the geo-
metric delay can be approximated by Formula (5). Fig-
ure 7 shows the variations of the coordinate term and
the difference between models (4) and (5) with respect
to UT for the approach of the Sun to the radio source
1243-072. This coordinate term does not exceed 1 ns

even for a small angle 6.
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Fig. 7 Variations of the coordinate term (left) and comparison of
the two models for the approach of the Sun to the radio source
1243—-072 for baselines Kokee—Tsukub32, HartRAO-Wettzell,
Onsala60-Wettzell, and HartRAO—Onsala60.

Figure 8 shows the same values as Figure 7 but for
the case of 1922-224. The coordinate term here is also
negligible. The discrepancies between models (4) and
(5) do not exceed 0.1 ps and can be ignored.
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Fig. 8 Variations of the coordinate term (left) and comparison of
the two models for the approach of the Jupiter to the radio source
1922-224 for baselines Hobart26-Tsukub32, Parkes—Tsukub32,
Hobart26-Parkes, and Tsukub32—Kokee.
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6 Conclusion

We proposed an alternative presentation of the effect of
GR in the total VLBI group delay model. We showed a
new formula, which combines the GR effects from the
gravitational and geometric delays with a precision of
as much as 1 ps along all ranges of the angular distance
between a gravitational body (Sun, Jupiter) and an en-
countered radio source. In addition, this alternative for-
mula could be easily linked to the light deflection angle
at an arbitrary angular distance.
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