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Abstract Due to the advanced capability of today’s
ultra-wideband feed systems and low-noise amplifiers,
interesting upgrades for future VLBI receiver and tele-
scope design should be considered. Multiple input pa-
rameters need to be taken into account for optimal
sensitivity and applications of the future astronomical
and geodetic observational systems. In this paper we
present an overview of some trade-offs for wideband
systems between SEFD, bandwidth, and telescope re-
flector optics. We evaluate receiver bandwidths from
3.5:1 to 10.3:1 bandwidth within the frequency range
1.5-24 GHz in different configurations. Due to poten-
tial RFI pollution of the lower frequencies we present
potential feed upgrades for the most common reflector
geometries of VGOS and EVN telescopes that mitigate
this problem. The results of this work is relevant for fu-
ture VLBI stations and telescope design in general.
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1 Introduction

The VLBI Global Observing System (VGOS) network
typically uses frequencies over 2—18 GHz with receiver
bandwidth ratios of 6:1. The benefit of wideband feed
systems is that continuous observational bandwidth
will be available, at the expense of absolute system
equivalent flux density (SEFD) over frequency. Despite
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Fig. 1 Onsala Twin Telescope (OTT) on the left and center; On-
sala 25-m telescope on the right.

this trade-off, with current state-of-the-art low-noise
amplifiers (LNA) and highly optimized feed antennas,
a good sensitivity (SEFD) level can still be achieved.
The research project BRoad-bAND (BRAND),
funded by EU Horizon 2020 RadioNet, will cover
a decade in frequency over 1.5-15.5 GHz with a
single-pixel feed [1]. This receiver system will enable
continuous observations within the European VLBI
Network (EVN) over L-, S-, C-, X-, and Ku-band. We
evaluate the BRAND feed with simulations in a VGOS
reflector, the Onsala Twin Telescope (OTT) [2], see
Figure 1, and compare to the current system installed
on one of the telscopes [3]. Due to the radio frequency
interference (RFI) pollution at L- and S-band frequen-
cies and the probable release of more frequencies for
5G telecommunication, potential new frequency bands
should also be investigated. With respect to this, we
present the high-frequency quad-ridge flared horn
(QRFH) developed for the Square Kilometre Array
(SKA) project covering 4.6-24 GHz [4] and evaluate
it in the VGOS reflector through simulations. These
feeds are optimized for reflectors with low focal length
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over diameter ratio, f/D, which corresponds to a large
half-subtended opening angle, 6,, see Figure 2. Since
many of the EVN telescopes are reflectors with high
f/D, we include a feed system over 4.4-15.5 GHz
designed for the Onsala 20-m telescope to compare.
In this paper we use measured feed beam patterns
for the current OTT QRFH over 3-18 GHz and for
the SKA Band B QRFH over 4.6-24 GHz. The feed
beam patterns for the BRAND QRFH over 1.5-15.5
GHz and the 4.4-15.5 GHz system for Onsala 20-m
telescope are simulated. The measured patterns show
good agreement with simulated. The patterns are used
in the system simulator for the full telescope beam
pattern simulations described in the next section.
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Fig. 2 Half-subtended angle 6, seen from the feed-point, plotted
against corresponding effective f/D for the reflector geometry.

2 Analysis

In the analysis we compare four different reflector ge-
ometries that are illustrated in Figure 3. The corre-
sponding O, are highlighted in Figure 2 with the largest
being 6, = 79.61° for the prime-focus reflector and the
Cassegrain dual-reflector the smallest 6, = 6.09°. The
Gregorian ring-focus (VGOS) represents 6, = 65° and
the Gregorian offset 6, = 58°.

For accurate SEFD analysis we use a full system
simulator [5] that uses physical optics (PO) + physical

Fig. 3 (Top-left) Gregorian ring-focus axial-symmetric dual-
reflector, common concept for VGOS; (Top-right) Primary-focus
axial-symmetric reflector; (Bot-left) Cassegrain axial-symmetric
dual-reflector, common concept within EVN; (Bot-right) Grego-
rian offset dual-reflector, common concept for new generation
astronomy arrays (e.g., SKA, ngVLA).

theory of diffraction (PTD) to calculate the full tele-
scope beam pattern, G(0, ¢, f). The telescope reflector
is fed with either simulated or measured feed beam pat-
terns. The full telescope beam pattern is used to weight
the surrounding sky noise temperature, 7(0,9, f), in
a full-sphere integration to calculate the antenna noise
temperature, Ty, see Equation 1. One key component
in Ty is the amount of spill-over noise picked up from
the 300 K ground noise temperature.

_ [ J1zG(6.9.1)T(6.9,f) sin0d6d¢p
~ [ ]izG(6.9.f)sin6dodp

For the feed models analyzed in this paper a very
high radiation efficiency is achieved. Therefore we as-
sume a simple model for the total system noise: Ty, =
Tx + Trec- Trec represents the noise of the complete
receiver chain. In Figure 4 we present two different re-
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Fig. 4 Measured receiver noise temperatures, Tggc, for two dif-
ferent wideband systems in Onsala.
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timation we include appropriate degradation of SEFD
due to the aperture blockage for the respective reflector
geometry (not applicable for offset reflectors).

3 Wideband System Performance

In Figure 5 we present simulated aperture efficiency,
Na = Acfr/Aphy, of the receiver systems on different
reflectors. Ay, is the available physical area of the re-
flector. The 10.3:1 feed was successfully designed for
the prime-focus configuration with a challenging 6, =
79.61° to illuminate. Therefore, in the VGOS reflector
at the low-frequency end it is over-illuminating (lower
1n,) but matches better at high frequency when the feed
beamwidth is slightly narrowed. The 5.2:1 feed show
fairly smooth 1, over bandwidth in the VGOS reflec-
tor. In Figure 6 we present the simulated SEFD at el-
evation 8 = 30° for the wideband systems applicable
to the VGOS reflector. Simulation of one of the cur-
rent OTT receivers is represented with the green dash-
dotted line over 3—18 GHz. An alternative 5.2:1 sys-
tem is presented over 3.5-18 GHz for a possible mit-
igation of RFI below the 3.5 GHz. Due to the waveg-
uide structure of the QRFH feed, it acts as a high-pass
filter for frequencies below the cut-off. The receiver
systems show excellent simulated SEFD performance
where the ones with less than decade bandwidth show
SEFD better than 1,000 Jy over most of the respective
frequency band.

Another interesting aspect of these receiver sys-
tems is how the performance scales with size of the
main reflector. Within the EVN, main-reflector diame-
ters range up to 100 m. The OTT VGOS reflector mea-
sures 13.2 m, whilst the SKA offset Gregorian reflec-
tor is 15 m in effective diameter. SEFD scales inversely

BW Ratio (f/f,)

Fig. 5 Simulated aperture efficiency for different receiver sys-
tems in different reflector geometries. The bandwidth is normal-
ized to the lowest frequency fj.
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Fig. 6 Simulated SEFD for four different receiver systems in
the OTT 13.2-m reflector (VGOS). Elevation: 8 = 30°, purple-
dashed line represents the 2,100 Jy specification.

proportional to A, ¢y = NaAppy (Equation 2). The physi-
cal main-reflector area can be written Ay = 71(D,, /2)?
where D,, is the main-reflector diameter. In Figure 7
and Figure 8 we present SEFD as a contour plot over
frequency and telescope main-reflector diameter, for
the different receiver systems on different reflectors.
The homogeneously dark red colored area represents
SEFD higher than 2,100 Jy and does not fulfill VGOS
specifications. For the VGOS type reflector in Figure
7 the 4.6-24 GHz system is on equal or better than
the 3—18 GHz receiver on OTT, for overlapping fre-
quencies. As mentioned, the higher cut-off frequency
at 4.6 GHz mititgates potential LNA saturation from
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Fig. 7 Simulated SEFD (contour) for three receiver systems
evaluated in Gregorian ring-focus type reflector (VGOS), plot-
ted against main-reflector diameter size (x-axis) and frequency
(y-axis). (Top) Current OTT, 6:1 bandwidth, 3—-18 GHz; (Mid)
BRAND, 10.3:1 bandwidth, 1.5-15.5 GHz; (Bot.) SKA Band B,
5.2:1, 4.6-24 GHz.
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the lower bands whilst the inclusion of the water-line
at 22 GHz within the band introduces another possibil-
ity. In [6] we investigate theoretically this receiver sys-
tem as a potential line-of-sight water vapor radiometer
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Fig. 8 Simulated SEFD (contour) for three receiver systems
evaluated in three different reflector types, plotted against main-
reflector diameter size (x-axis) and frequency (y-axis). (Top)
Cassegrain dual-reflector, wideband system, 3.5:1 bandwidth,
4.4-15.5 GHz; (Mid) Prime-focus reflector, BRAND, 10.3:1
bandwidth, 1.5-15.5 GHz; (Bot.) Shaped Offset Gregorian re-
flector, SKA Band B, 5.2:1, 4.6-24 GHz.

on the telescope. From simulation results, we expect a
performance close to that of the dedicated water vapor
radiometers of today. The obvious benefit is to have ac-
curate water vapor measurements in the telescope line-
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of-sight during observations with no separate system
needed.

In general the receiver systems simulate better
than specification on reflector diameters of 10-13 m
for the Gregorian ring-focus type used in VGOS.
The 1.5-15.5 GHz system can achieve similar SEFD
for a 15-m dish in both Gregorian ring-focus and
prime-focus reflectors, see middle plot in Figures 7
and 8, respectively. The best SEFD using the smallest
reflector diameter is found in the highly shaped offset
Gregorian reflector in the bottom row of Figure 8.
This is expected as the feed is optimized specifically
for this low-spillover reflector. For the Cassegrain
dual-reflector system shown in the top row of Figure 8
the required reflector diameter is larger to achieve the
same SEFD. This is due to the difficulty in designing
feeds for a small 6, over a large bandwidth without
sacrificing aperture efficiency 7,. This type of feed
in a standard horn configuration generally needs to
be very large, which makes it difficult to fit in the
receiver cabin as well. However, this result shows
good performance over the 3.5:1 bandwidth which
overlaps with VGOS frequencies. This configuration
also has a higher cut-off frequency to mitigate low-
frequency RFI pollution and is suitable for reflectors
with small 6,, which is common within the EVN. The
frequency band available would allow for joint VLBI
observations with VGOS.

4 Conclusions

We present different receiver systems applicable espe-
cially to the VGOS-type Gregorian ring-focus reflector.
The presented receiver systems are evaluated through
simulation with respect to main-reflector diameter and
bandwidth for VGOS and other common reflector ge-
ometries. The 4.6-24 GHz allows for an interesting
upgrade option in future VGOS receivers with a less
RFI-polluted frequency band. SEFD performance can
be expected in the same order as current VGOS sys-
tems, with the possibility of line-of-sight WVR in par-
allel with observation (further studied in [6]). A re-
ceiver system overlapping VGOS frequencies and suit-
able for Cassegrain dual-reflectors with high f/D (e.g.,
EVN) was also presented and evaluated. Finally we in-
clude the 10.3:1 receiver developed for radio astron-
omy (BRAND) over 1.5-15.5 GHz. This option en-

ables a decade in available bandwidth with a substan-
tial overlap with VGOS frequencies, further enabling
joint observations between these systems.
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