
IVS Memorandum 2008-012v01

14 August 2008

“Vienna VLBI2010 PPP Simulator”

Andrea Pany, Jörg Wresnik, Johannes Böhm  



 
Vienna VLBI2010 PPP Simulator 

 

A. Pany, J. Wresnik, J. Böhm 
August 2008 

 
 
Abstract 
Though a theoretical approach in terms of VLBI, the Precise Point Positioning (PPP) 
Simulator has proven to be a very helpful tool. It is based on MATLAB script files and 
computes either a classical least squares (CLS) or a Kalman filter (KF) solution. In this 
memo, the advantages of the PPP simulator will be pointed out. The two approaches, CLS and 
KF, will be described briefly. Finally, PPP CLS and PPP KF results will be compared to 
results of the simulator version of OCCAM Kalman filter. 
 
1. Introduction 
 
In addition to the VLBI2010 Monte Carlo simulators based on the VLBI analysis software 
packages OCCAM (Wresnik et al., 2007a) and Calc/Solve (MacMillan, 2007), a VLBI2010 
precise point positioning (PPP) Simulator was developed at the Institute of Geodesy and 
Geophysics, Vienna University of Technology. Though a theoretical approach in terms of 
VLBI, it has several advantages that make it a powerful tool for VLBI2010 simulation 
studies: 
 

− It is based on MATLAB script files – the source code is compact and clear making it 
easy to implement modifications. 

− Since it is evaluating single stations only, it is time saving – many different strategies 
can be tested in fairly short time. 

− Due to its simplicity it supports the basic understanding of the main stochastic error 
sources, tropospheric wet delay and clock. 

 
As for the OCCAM and Calc/Solve simulations, time series of artificial group delay 
observables delaygroup are generated, consisting of tropospheric equivalent zenith wet delays 
zwd (provided by a generator based on a turbulence model), stochastic variations of station 
clock (clk) and white noise (wn) to account for the thermal noise of the receiving system. The 
equivalent zenith wet delays need to be mapped with a wet mapping function mfw (which is 
considered to be free of error) to the elevations el of the observations: 
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The equivalent zenith wet delays are generated with a turbulence simulator following the 
approach proposed by Nilsson et al. (2007) which is based on the Treuhaft and Lanyi 
turbulence model (1987). The parameters driving the turbulence, refractive index structure 
constant Cn, effective height of wet troposphere H, and wind velocity vector v, are provided 
by Tobias Nilsson from Onsala Space Observatory, Sweden (see Nilsson 2008 for more 
details on how the parameters are derived). The stochastic variations of station clock are 
computed as sum of random walk and integrated random walk (Böhm et al., 2007), typically 
with power spectral densities corresponding to Allan standard deviations (ASD) of 1e-14 @ 
50 min or 2e-15 @ 15 min. For OCCAM and Calc/Solve simulations, a white noise of 4 ps 



per baseline, which is the nominal goal of VLBI2010, is added. For PPP this corresponds to a 
white noise of 4/√2 ps per station. 
 
2. The VLBI2010 PPP Simulator 
 
The fake delay observables (1) form the input to the PPP Simulator. The PPP itself is 
performed either with the classical least squares (CLS) method or a Kalman filter (KF) which 
will be described in more detail below. The parameters to be estimated are troposphere 
parameters, clock parameters and station position residuals. Goal is to regain the single 
contributions of troposphere and clock to the cumulative delay as accurately as possible. The 
separation of these parameters is possible due to their distinct dependencies on elevation 
angle. This procedure is repeated 25 times to obtain a sample of output parameters that can be 
analyzed statsitically. The results are position repeatabilities, and rms values of zenith wet 
delay and clock post fit residuals. 
 
2.1 PPP with classical least squares 
 
The classical least squares method, also referred to as Gauss-Markov method, is widely 
known and shall not be discussed in detail here. Troposphere and station clock are treated as 
stochastic parameters. The tropospheric slant delay swd is modeled with a zenith wet delay 
zwd and superimposed gradients as proposed in the IERS Conventions 2003 (McCarthy and 
Petit, 2004): 
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In (2) mfw denotes wet mapping function, el elevation angle, grdN and grdE north and east 
gradient respectively, and az azimuth. The parameters to be estimated thus are zwd, grdN and 
grdE, all of which are parameterized as piecewise linear functions. One offset is estimated at 
the first time epoch and then one rate per estimation interval. The rates are constrained to zero 
by introducing pseudo observations. Station clock is modeld with a second order polynomial 
and superimposed piecewise linear functions. As for troposphere parameters, the clock rates 
are constrained to zero. 
The components of station position are treated as deterministic parameters and are estimated 
once per 24 hour session. 
 
2.2 PPP with Kalman filter 
 
The KF version of the PPP Simulator is based on a covariance propagating Kalman filter as 
described thoroughly by e.g. Gelb (1974). Figure 1 shows a flow chart of the Kalman filter 
algorithm. For initialization of the filter, a priori values x0 with variances (and eventually 
covariances C0) are required for the parameters to be estimated. A mathematical formulation 
of the models used to describe reality is contained in the state transition matrix A. Information 
about how well these models represent reality needs to be given in form of the system noise 
matrix Q. With this information, the filter can be initialized as shwon in Figure 1. 
 



 
 
 
 
 
Figure 1: Flow chart of 
a covariance based 
Kalman filter 

 
The filter algorithm itself starts after the initialization. The equations can be divided into two 
groups: the time update equations (also referred to as Predictor-Equations) and the 
measurement update equations (also referred to as Corrector-Equations). 
With the system state vector xk-1 at time epoch tk-1, the corresponding covariance matrix Pk-1, 
and the matrices A and Q, the system state vector xk

- and its covariance matrix Pk
- at time 

epoch tk can be predicted. Then, the measurement vector zk at time epoch tk and the design 
matrix Hk, that is linking zk and the system state vector, are used to correct the predicted 
system state vector xk

-. The corrected system state vector xk
+ and its corrected covariance 

matrix Pk
+are the final estimates of the filter at time epoch tk. These results are used to predict 

the system state vector at the next time epoch and this loop is repeated until all measurements 
have been included. 
In the filter estimate at time epoch tn, only the measurements between the first time epoch and 
time epoch tn are included. For estimation of stochastic parameters, all available information 
should be included. Thus, Herring et al (1990) proposed to use smoothing instead of filtering. 
The principle of smoothing is shown in Figure 2. A smoother is a combination of two Kalman 
filters running in opposite directions. The forward running filter (FRF) starts at the first time 
epoch tfirst, the backward running filter (BRF) starts at the last time epoch tlast. At time epoch 
tn both filters together contain all available information (see Figure 2). 
 

 
 
 
Figure 2: Principle of smoothing 
(Gelb 1974) 

 
Be xF the FRF estimate of the system state vector and xB the BRF estimate of the system state 
vector at time epoch tn. Then, the smoothed estimate of the system state vector xS can be 
comupted as 
 
 ( ) 1−−+= FBFS xxPxx ,         (3) 
 
where P  is a weighting matrix given by 
 
 ( ) 1−+= BFF PPPP          (4) 
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with PF being the covariance matrix of the FRF estimate and PB being the covariance matrix 
of the BRF estimate. The covariance matrix of the smoothed system state vector can finally be 
computed by 
 
 ( ) 111 −−− += BFS PPP .         (5) 
 
Station coordinate residuals are treated as deterministic parameters. Their final estimate is the 
final estimate of the FRF. Troposphere and clock are treated as stochastic parameters. Their 
final estimates are thus taken from the smoothed solution et each time epoch. Zenith wet 
delay is modelled as random walk with a variance rate of typically 0.7 ps²/s. As for the CLS, 
the zenith wet delay is superimposed with gradients which are also estimated as random walks 
with a variance rate of 0.5 ps²/s. Station clock is composed of a rate, treated as deterministic 
parameter, and an offset, treated as stochastic parameter and estimated as random walk with a 
variance rate of typically 1 ps²/s. These variance rates are used for all stations and fit the 
variance rates used for the OCCAM VLBI2010 simulations (Wresnik et al., 2007b). 
 
 
3. Valdiation and Results 
 
For validation of the PPP Simulator and to assess how close the PPP results are to what can be 
expected from real VLBI data, comparisons to OCCAM Kalman filter results were carried 
out. The comparison was carried out for four 16 station VLBI2010 test schedules: 
st16uni_15_3_230, st16uni_30_6_230, st16_uni_45_9_230 and st16uni_60_12_230. These 
schedules were generated by Toni Searle from NRC, Canada and are characterized by 
uniform sky coverage over time intervals of 3, 6, 9, and 12 minutes respectively. For more 
information about these schedules see Petrachenko et al (2008). 
For all 16 stations and each schedule, a PPP was performed using the same time series of 
turbulent equivalent zenith wet delay and station clock as were used for the OCCAM 
simulations. For each station and each of the 25 days of data, a 3D position error was 
computed. To obtain a single value to compare, an rms of 3D position error was computed 
over the 25 days for each station. 
These 3D rms error values are plotted in Figure 3 for the four schedules. OCCAM results are 
plotted in blue, PPP results in red. From this plot it can be deduced that the solutions of the 
two simulators fit pretty well. In general, the PPP solution is a little better, what had to be 
expected since with PPP it is not necessary to separate the tropospheres of two stations 
forming a baseline.  
 
Figure 4 shows rms of zenith wet delay and clock post fit residuals for the forward running 
filter, the backward running filter and the smoothed solution. Although the results of the 
backward running filter are worse than the results of the forward running filter, the smoothed 
solution is best. The filter recognizes that the backward solution is worse than the forward 
solution and assigns less weight to the backward solution when performing the smoothing. 
 
  



 

 

Figure 3: rms of 3D position error in mm for four VLBI2010 test schedules. OCCAM Kalman filter 
results can be seen in blue, PPP Kalman filter results in red. The error bars show 1 sigma of the scatter 
(rms/sqrt(2n) where n = 25). ASD 1e-14 @ 50 min, wn = 4/sqrt(2) ps for PPP and 4 ps for OCCAM. 
Variance rates: 0.7 ps²/s (zwd), 0.5 ps²/s (grd), and 1 ps²/s (clk offset).  
 
 

  

Figure 4: mean rms of post fit residuals in mm for forward solution (blue), backward solution 
(green), and smoothed solution (red). Schedule: st16uni_60_12_230.skd, ASD 1e-14 @ 50 min, wn = 
4/sqrt(2) ps. Variance rates: 0.7 ps²/s (zwd), 0.5 ps²/s (grd), 1 ps²/s (clk offset). The errorbars show 1 
sigma of the scatter (rms/sqrt(2n) where n = 25). 
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